
Institut Supérieur de l’Aéronautique et de l’Espace

FITR304 - Software Validation
Deductive methods for proving imperative programs

Christophe Garion
DMIA – ISAE

Christophe Garion IN324 Software Validation – deductive methods 1/ 149

License CC BY-NC-SA 3.0

This work is licensed under the Creative
Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported license (CC BY-NC-SA 3.0)

You are free to Share (copy, distribute and transmite) and to Remix (adapt)
this work under the following conditions:

Attribution – You must attribute the work in the manner spec-
ified by the author or licensor (but not in any way that suggests
that they endorse you or your use of the work).
Noncommercial – You may not use this work for commercial
purposes.

Share Alike – If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same or
similar license to this one.

See http://creativecommons.org/licenses/by-nc-sa/3.0/.

Christophe Garion IN324 Software Validation – deductive methods 2/ 149

http://creativecommons.org/licenses/by-nc-sa/3.0/

Quotes…

Beware of bugs in the above code; I have only proved it correct,
not tried it.

Donald Knuth, 1977

If you find that you’re spending almost all your time on theory,
start turning some attention to practical things; it will improve
your theories. If you find that you’re spending almost all your
time on practice, start turning some attention to theoretical
things; it will improve your practice.

Donald Knuth

Christophe Garion IN324 Software Validation – deductive methods 3/ 149

Outline
1 - Introduction on formal methods
2 - Formal proof
3 - The Floyd-Hoare logic
4 - Automatic verification of imperative programs

Christophe Garion IN324 Software Validation – deductive methods 4/ 149

Outline of part 1 - Introduction on formal methods

1 - Introduction on formal methods

1 Why formal methods?

2 Programming languages semantics

3 Some techniques

4 Agenda

Christophe Garion IN324 Software Validation – deductive methods 5/ 149

Outline of part 1 - Introduction on formal methods

1 Why formal methods?

2 Programming languages semantics

3 Some techniques

4 Agenda

Christophe Garion IN324 Software Validation – deductive methods 6/ 149

Critical softwares

Software is critical in lots of domains: aerospace, health care, defense…

Failures in critical softwares may lead to:
loss of money
mission loss
lifes loss

Question
What are the challenges to build reliable softwares?

Christophe Garion IN324 Software Validation – deductive methods 7/ 149

Software is particular

Good practises from civil eng.
precise calculations/estimations of forces, stress, etc.
hardware redundancy (“make it a bit stronger than necessary”)
robust design (single fault not catastrophic)
clear separation of subsystems
follows design patterns that are proven to work

Christophe Garion IN324 Software Validation – deductive methods 8/ 149

Software is particular

…that do not work for software
software systems compute non-continuous functions

å single bit-flip may change behaviour completely
redundancy as replication does not help against bugs
no physical or modal separation of subsystems

å local failures often affect whole system
software designs have very high logic complexity
most SW engineers untrained in correctness
cost efficiency more important than reliability
design practice for reliable software in immature state

Christophe Garion IN324 Software Validation – deductive methods 8/ 149

A central strategy: testing

Testing against bugs and external faults.

But:
testing can show the presence of bugs, not their absence
test cases are difficult to produce when searching rare/unexpected
faults
testing is expensive

Example: how do you verify that a sort program with the following
signature is correct?

void sort (int* array, int n) {
...

}

å not so easy…

Christophe Garion IN324 Software Validation – deductive methods 9/ 149

Sorting: a mathematical formalization .

We have first to “mathematically characterize” our sorting algorithm.

Definition (sorting a sequence)
Let s be a sequence of elements of type E , n be the length of s and
≺ a total order on E , then the function sort applied to s returns a
sequence s ′ that is a permutation of s and is sorted w.r.t. ≺.

OK, this is a clear specification for sorting, but can you write a more
precise specification w.r.t. the programming language we use?

Christophe Garion IN324 Software Validation – deductive methods 10/ 149

What are formal methods?

Definition (informal, from Clarke and Wing 1996)
Formal methods are mathematically-based languages, techniques
and tools to verify software systems.

Clarke, Edmund M. and Jeannette. M. Wing (1996).
Formal Methods: State of the Art and Future Directions.
Technical Report CMU-CS-96-178.
Department of Computer Science, Carnegie-Mellon University.

Christophe Garion IN324 Software Validation – deductive methods 12/ 149

Are formal methods really used (and useful)?

YES, e.g.:
railway signalling and train control
banking systems
Airbus A380 with SCADE, CAVEAT and ASTRÉE
Microsoft SLAM project and Static Driver Verifier (SDV) tool
the SeL4 microkernel project at NICTA
the INRIA CompCert project

Woodcock, Jim et al. (2009).
“Formal Methods: Practice and Experience”.
In: ACM Computing Surveys 41.4,
Pp. 1–40.

Christophe Garion IN324 Software Validation – deductive methods 13/ 149

http://www.esterel-technologies.com/products/scade-suite/
http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/slam/
http://www.l4hq.org/
https://en.wikipedia.org/wiki/NICTA
http://compcert.inria.fr/

Are formal methods really used (and useful)?

YES, e.g.:
railway signalling and train control

RER Line A (1989), retro-engineering and formal proof
å 10 unsafe bugs found

Line 14 (METEOR) of the Paris Métro (1999), developped using the
B method for safety-critical parts

å no unit or integration tests
å delivery of a safe software at first shot

Roissy Airport shuttle (2007)
banking systems
Airbus A380 with SCADE, CAVEAT and ASTRÉE
Microsoft SLAM project and Static Driver Verifier (SDV) tool
the SeL4 microkernel project at NICTA
the INRIA CompCert project

Christophe Garion IN324 Software Validation – deductive methods 13/ 149

http://www.esterel-technologies.com/products/scade-suite/
http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/slam/
http://www.l4hq.org/
https://en.wikipedia.org/wiki/NICTA
http://compcert.inria.fr/

Are formal methods really used (and useful)?

YES, e.g.:
railway signalling and train control
banking systems
Mondex Smart Card (1990), a smartcard-based electronic cash
system

å proof using Z
å high-level of security
å revived as a pilot for the Grand Challenge in Verified Software

Airbus A380 with SCADE, CAVEAT and ASTRÉE
Microsoft SLAM project and Static Driver Verifier (SDV) tool
the SeL4 microkernel project at NICTA
the INRIA CompCert project

Christophe Garion IN324 Software Validation – deductive methods 13/ 149

http://www.esterel-technologies.com/products/scade-suite/
http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/slam/
http://www.l4hq.org/
https://en.wikipedia.org/wiki/NICTA
http://compcert.inria.fr/

Are formal methods really used (and useful)?

YES, e.g.:
railway signalling and train control
banking systems
Airbus A380 with SCADE, CAVEAT and ASTRÉE

å 70% of code generated automatically, significant decrease in
coding errors

å high-level of security
å revived as a pilot for the Grand Challenge in Verified Software

Microsoft SLAM project and Static Driver Verifier (SDV) tool
the SeL4 microkernel project at NICTA
the INRIA CompCert project

Christophe Garion IN324 Software Validation – deductive methods 13/ 149

http://www.esterel-technologies.com/products/scade-suite/
http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/slam/
http://www.l4hq.org/
https://en.wikipedia.org/wiki/NICTA
http://compcert.inria.fr/

Are formal methods really used (and useful)?

YES, e.g.:
railway signalling and train control
banking systems
Airbus A380 with SCADE, CAVEAT and ASTRÉE
Microsoft SLAM project and Static Driver Verifier (SDV) tool

å drivers formally verified, the end of Blue Screen of Death (al-
most ,)

People life ,: J. Wing is now Corporate Vice President of Microsoft
Research, hence the importance of FM for Microsoft…
the SeL4 microkernel project at NICTA
the INRIA CompCert project

Christophe Garion IN324 Software Validation – deductive methods 13/ 149

http://www.esterel-technologies.com/products/scade-suite/
http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/slam/
http://www.l4hq.org/
https://en.wikipedia.org/wiki/NICTA
http://compcert.inria.fr/

Are formal methods really used (and useful)?

YES, e.g.:
railway signalling and train control
banking systems
Airbus A380 with SCADE, CAVEAT and ASTRÉE
Microsoft SLAM project and Static Driver Verifier (SDV) tool
the SeL4 microkernel project at NICTA

å formal proof of functional correctness of the Kernel
å a high-assurance drone is being built

Heiser, Gernot and Kevin Elphinstone (2016).
“L4 Microkernels: The Lessons from 20 Years of Research and
Deployment”.
In: ACM Transactions on Computer Systems 34.1,
1:1–1:29.
doi: 10.1145/2893177.

the INRIA CompCert project
Christophe Garion IN324 Software Validation – deductive methods 13/ 149

http://www.esterel-technologies.com/products/scade-suite/
http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/slam/
http://www.l4hq.org/
https://en.wikipedia.org/wiki/NICTA
http://ts.data61.csiro.au/projects/TS/SMACCM/
http://dx.doi.org/10.1145/2893177
http://compcert.inria.fr/

Are formal methods really used (and useful)?

YES, e.g.:
railway signalling and train control
banking systems
Airbus A380 with SCADE, CAVEAT and ASTRÉE
Microsoft SLAM project and Static Driver Verifier (SDV) tool
the SeL4 microkernel project at NICTA
the INRIA CompCert project

å have you ever looked at GCC’s bugs (https://gcc.gnu.org/
bugzilla/)?

å a proven compiler for a realistic part of the C programming
language

Yang, Xuejun et al. (2011).
“Finding and understanding bugs in C compilers”.
In: Proceedings of the 2011 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI) .
doi: 10.1145/1993498.1993532.

Christophe Garion IN324 Software Validation – deductive methods 13/ 149

http://www.esterel-technologies.com/products/scade-suite/
http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/slam/
http://www.l4hq.org/
https://en.wikipedia.org/wiki/NICTA
http://compcert.inria.fr/
https://gcc.gnu.org/bugzilla/
https://gcc.gnu.org/bugzilla/
http://dx.doi.org/10.1145/1993498.1993532

Outline of part 1 - Introduction on formal methods

1 Why formal methods?

2 Programming languages semantics

3 Some techniques

4 Agenda

Christophe Garion IN324 Software Validation – deductive methods 14/ 149

What is semantics?

In order to prove properties on programs, we need to define precisely the
semantics of the underlying programming language.

Floyd, Robert W. (1967).
“Assigning meanings to programs”.
In: Mathematical aspects of computer science.
Ed. by J. T. Schwartz.
American Mathematical Society,
Pp. 19–32.
isbn: 0821867288.

There are of course several semantics for programming languages.

Christophe Garion IN324 Software Validation – deductive methods 15/ 149

https://en.wikipedia.org/wiki/Semantics_(computer_science)

Operational semantics (small steps)

Operational semantics defines a program semantics with states, i.e.
functions from memory locations (variables) to values.

Rules define the semantics of the constructs of the program:

〈b, σ〉 → true 〈c0, σ〉 → σ′

〈if b then c0 else c1, σ〉 → σ′

〈b, σ〉 → false 〈c1, σ〉 → σ′

〈if b then c0 else c1, σ〉 → σ′

This leads to traces, i.e. sequences of states.

Proofs can be done using this formal system about the final state of the
program.

Christophe Garion IN324 Software Validation – deductive methods 16/ 149

https://en.wikipedia.org/wiki/Operational_semantics

Trace semantics

We can characterize the set of traces of a program:

{s0 → sn | ∀i ∈ [0, n − 1] (si , si+1) ∈ fop and s0 ∈ Init}

where fop is the set of transitions from state to state.

We can also use collecting semantics, i.e. be only interested in
reachable states.
This semantics is useful as it can be used to guarantee that a particular
property holds for all reachable states (an invariant for instance).

Christophe Garion IN324 Software Validation – deductive methods 17/ 149

Axiomatic semantics

In axiomatic semantics, the semantics of the program is defined with
Hoare triples:

{ϕ} P {ψ}

ϕ and ψ (resp. the precondition and the postcondition of P) are
mathematical formulas.

Rules are expressed using these triples:

{ϕ ∧ C} P {ψ} {ϕ ∧ ¬C} Q {ψ}
(Cond.)

{ϕ} if C then P else Q fi {ψ}

This formal system can be used to derive proofs about programs.

Christophe Garion IN324 Software Validation – deductive methods 18/ 149

Outline of part 1 - Introduction on formal methods

1 Why formal methods?

2 Programming languages semantics

3 Some techniques

4 Agenda

Christophe Garion IN324 Software Validation – deductive methods 19/ 149

Model checking

In model checking, we have:
a model of the system/the program
a property to verify

We want to verify exhaustively that the model verifies the property.

For instance, the model can be the collecting traces and the property can
expressed in temporal logic.

Christophe Garion IN324 Software Validation – deductive methods 20/ 149

https://en.wikipedia.org/wiki/Temporal_logic

Abstract interpretation

Abstract interpretation is a sound approximation of the semantic of a
program.
The idea is to “encompass” the traces of the program into an more
abstract domain.

For instance, if you want to proof that there is no division-by-zero in your
program, you may restrict the integers to two values, 0 and others and
statically verify the property.

Abstract interpretation is also used in compilers for optimizations
purposes.

Christophe Garion IN324 Software Validation – deductive methods 21/ 149

https://en.wikipedia.org/wiki/Abstract_interpretation

Deductive methods: what is that?

Definition (simple but efficient…)
Deductive program verification is the art of turning the correctness of
a program into a mathematical statement and then proving it.

Filliâtre, Jean-Christophe (2011).
“Deductive Program Verification”.
Habilitation à diriger les recherches. Université Paris-Sud 11.

We have thus to answer the following questions:
what is a proof?
how can we turn the correctness of a program into a
mathematical statement?
can we automatically prove the correctness of a program?

Christophe Garion IN324 Software Validation – deductive methods 22/ 149

Deductive methods: is it old?

Turing, Alan Mathison (1949).
Checking a large routine.
Report of a Conference on High Speed Automatic Calculing Ma-
chines.
Cambridge: Mathematical Laboratory,
Pp. 67–69.

r ′ = 1
u′ = 1 v ′ = u TEST r − n s ′ = 1 u′ = u + v s ′ = s + 1

TEST s − rr ′ = r + 1

Christophe Garion IN324 Software Validation – deductive methods 23/ 149

Deductive methods: the big picture

Formal specification C program

Mathematical state-
ment to prove

4
proved

8
not proved or…

the ACSL specifica-
tion language

generated by the
WP plugin of
Frama-C

automatic or inter-
active provers

Christophe Garion IN324 Software Validation – deductive methods 24/ 149

Outline of part 1 - Introduction on formal methods

1 Why formal methods?

2 Programming languages semantics

3 Some techniques

4 Agenda

Christophe Garion IN324 Software Validation – deductive methods 25/ 149

FITR304: formal methods

During the lecture, you will choose to study deeper one of the following
formal methods:

1 deductive methods (C. Garion, ISAE/DMIA)
å how can we prove that imperative programs are correct w.r.t.

to a specification?
2 model checking (J. Brunel, ONERA/DTIM)

å given a model of a system, check if a given property is re-
spected or not (mostly temporal properties)

3 abstract interpretation (P.-L. Garoche, ONERA/DTIM)
å a theory of sound approximation of the semantics of computer

programs

Christophe Garion IN324 Software Validation – deductive methods 26/ 149

FITR304: agenda and evaluation

6 × 2 hours sessions are dedicated to the track you have chosen
(groups of 3-4 students by track)
a global miniproject on a rover: each FM will study one part of the
rover architecture (50% of the final note)
final presentation (50% of the final note) + MQC on 02/27/2017
industrial feedback conference

Christophe Garion IN324 Software Validation – deductive methods 27/ 149

Outline of part 2 - Formal proof

2 - Formal proof

5 Formal systems

6 Natural deduction for PL: NK

7 Natural deduction for FOL: NK

Christophe Garion IN324 Software Validation – deductive methods 28/ 149

What is a proof?

Definition (informal, from Wikipedia…)
A proof is sufficient evidence or an argument for the truth of a propo-
sition.

Nice, but:
what is an argument?
what is truth?
what is a proposition?

All those notions are formally defined in mathematical logic.

Christophe Garion IN324 Software Validation – deductive methods 29/ 149

What is a proof?

Definition (informal, from Wikipedia…)
A proof is sufficient evidence or an argument for the truth of a propo-
sition.

Nice, but:
what is an argument?
what is truth?
what is a proposition?

All those notions are formally defined in mathematical logic.

Christophe Garion IN324 Software Validation – deductive methods 29/ 149

What is mathematical logic?

Informal definition
Mathematical logic is the study of the validity of an argument as a
mathematical object.

First question: what is an argument?
An argument is composed of:

a set of declarative sentences called premises
a word, therefore
a declarative sentence called conclusion

Second question: what is validity?
Validity of an argument can be defined:

in model theory: is the conclusion true when premises are?
in proof theory: does the argument respect some rules?

Christophe Garion IN324 Software Validation – deductive methods 30/ 149

What is mathematical logic?

Informal definition
Mathematical logic is the study of the validity of an argument as a
mathematical object.

Second question: what is validity?
Validity of an argument can be defined:

in model theory: is the conclusion true when premises are?
in proof theory: does the argument respect some rules?

Christophe Garion IN324 Software Validation – deductive methods 30/ 149

A multi-disciplinary field

Philosophy Mathematics Computer Science

• what is true?
• what is false?

• what is a proof ?
• what mathematical

structures do we
need to define a
proof?

• is this proof correct?

• is this program cor-
rect?

• can I automatically
produce code that
respect those speci-
fications?

• can we prove auto-
matically that this
theorem is true?

Christophe Garion IN324 Software Validation – deductive methods 31/ 149

Outline of part 2 - Formal proof

5 Formal systems

6 Natural deduction for PL: NK

7 Natural deduction for FOL: NK

Christophe Garion IN324 Software Validation – deductive methods 32/ 149

What is a formal system?

Definition (formal system)
A formal system is composed of two elements:

a formal language (grammar) defining a set of expressions E
a deductive system or deductive apparatus on E

We have thus to define:
what is a grammar
what is a deductive system

Christophe Garion IN324 Software Validation – deductive methods 33/ 149

Grammar

A formal grammar is a set of rules describing a formal language using
a finite alphabet.

For instance, the grammar {X = {a, b},V = {S},S, {S → aS,S → b}}
describe the language {anb | n ∈ N}.

There are other formalisms to describe (somme categories of) formal
languages: regular expressions, EBNF, inductive definitions etc.

In the following, we will use inductive definitions.

Christophe Garion IN324 Software Validation – deductive methods 34/ 149

Inductive definition

Definition (inductive or recursive definition)
An inductive definition of a set E is composed of:

a base case of the definition which defines elementary elements
of E
an inductive clause of the definition which defines elements of
E using other elements of E defined with a finite number of
steps n and operations
an extremal clause that says that E is the smallest set built
using the base case and the inductive clause.

Christophe Garion IN324 Software Validation – deductive methods 35/ 149

Some definitions by induction .

Exercise
Define N by induction.

Exercise
Define binary trees by induction.

Christophe Garion IN324 Software Validation – deductive methods 36/ 149

Structural induction

Given a set E defined inductively, we can prove properties on elements of
E using structural induction.

Definition (structural induction)
Let E be a set defined inductively and P a property on elements of E
to be proved. If:

P can be proved to be true on each base case
if we suppose that P is true on elements built with n steps then
P is true on elements that can be built with n + 1 steps

then P is true for every element of E .

Christophe Garion IN324 Software Validation – deductive methods 37/ 149

A proof by structural induction .

Exercise
Prove the following property of binary trees: “the number n of nodes
in a binary tree of height h is at least n = h and at most n = 2h − 1
where h is the depth of the tree”.

Christophe Garion IN324 Software Validation – deductive methods 38/ 149

Induction example: alphabet of LPL

Definition (alphabet of LPL)
The alphabet of LPLis composed of:

an infinite and enumerable set of propositional variables noted
Var = {p, q, r , . . .}
two constants noted > (top/true) and ⊥ (bottom/false)
logical connectors:
¬ negation
∨ or/disjunction
∧ and/conjunction
→ implication
↔ logical equivalence

parentheses ()

Christophe Garion IN324 Software Validation – deductive methods 39/ 149

Induction example: wff of LPL

Definition (well formed formulas)
if p is a propositional variable, then p is a wff. p is an atomic
formula or atom.
> and ⊥ are wff.
if ϕ is a wff, alors (¬ϕ) is a wff.
if ϕ and ψ are wff, then (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ→ ψ) and
(ϕ↔ ψ) are wff.

Christophe Garion IN324 Software Validation – deductive methods 40/ 149

Modelling exercise .

Exercise
Use propositional language to model the following declarative sentences.

1 it is raining and it is cold.
2 if he eats too much, he will be sick.
3 it is sunny but it is cold.
4 if it is cold, I take my jacket.
5 I take either a jacket, either an umbrella.
6 it is not raining.
7 in autumn, if it is cold then I take a jacket.
8 in winter, I take a jacket only if it is cold.
9 if Peter does not forget to book tickets, we will go to theater.
10 if Peter does not forget to book tickets and if we find a baby-sitter, we will

go to theater.
11 he went, although it was very hot, but he forgot his water bottle.
12 when I am nervous, I practise yoga or relaxation. Someone practising yoga

also practises relaxation. So when I do not practise relaxation, I am calm.
13 my sister wants a black and white cat.

Deductive system

Definition (deductive system)
A deduction system (or inference system) on a set E is composed
of a set of rules used to derive elements of E from other elements of
E . They are called inference rules.

If an inference rule allows to derive en+1 (conclusion) from P =
{e1, . . . , en} (premises), it will be noted as follows:

e1 e2 . . . en
en+1

When an inference rule is such that P = ∅ it is called an axiom.

If e1 is an axiom, it is either noted e1
or simply e1.

Christophe Garion IN324 Software Validation – deductive methods 42/ 149

Deductive system

Intuition

A rule e1 e2
e3

means:

from e1 and e2 you can deduce e3
to prove e3, it is sufficient to prove e1 and to prove e2

If e can be produced only from axioms using inference rules, then e is
called a theorem of F (same as in maths!). This is noted `F e.

Christophe Garion IN324 Software Validation – deductive methods 42/ 149

Using a formal system: example

To represent a proof, we will use trees. For instance, considering the
classical Hilbert system with Modus Ponens rule, here is a proof of
p → p:

(p → (p → p)) → ((p → ((p → p) → p)) → (p → p)) p → (p → p)

(p → ((p → p) → p)) → (p → p) p → ((p → p) → p)
p → p

Christophe Garion IN324 Software Validation – deductive methods 43/ 149

Outline of part 2 - Formal proof

5 Formal systems

6 Natural deduction for PL: NK
Deductive system
A new language: sequents for NK

7 Natural deduction for FOL: NK

Christophe Garion IN324 Software Validation – deductive methods 44/ 149

Outline of part 2 - Formal proof

5 Formal systems

6 Natural deduction for PL: NK
Deductive system
A new language: sequents for NK

7 Natural deduction for FOL: NK

Christophe Garion IN324 Software Validation – deductive methods 45/ 149

Introduction

Natural deduction is a formal system that has evolved from axiomatic
formal systems developped by 19th century mathematicians like Hilbert or
Russell.
G. Gentzen has proposed a more “intuitive” formal system, natural
deduction (natürliches Schließen).

Gentzen, Gerhard (1934).
“Untersuchungen über das logische Schließen I”.
In: Mathematische Zeitschrift 39.2,
Pp. 176–210.

— (1935).
“Untersuchungen über das logische Schließen II”.
In: Mathematische Zeitschrift 39.3,
Pp. 405–431.

Christophe Garion IN324 Software Validation – deductive methods 46/ 149

Rules for natural deduction

Definition (introduction and elimination rules)

A B
(I∧)

A ∧ B
A ∧ B

(E1
∧)

A
A ∧ B

(E2
∧)

B

A
(I1∨)

A ∨ B
B

(I2∨)
A ∨ B

A ∨ B

[A]
...
C

[B]
...
C

(E∨)
C

[A]
...
B

(I→)
A→ B

A→ B A
(E→)

B

Christophe Garion IN324 Software Validation – deductive methods 47/ 149

What are those [] everywhere?

Some premises in rules (E∨) and (I→) are between brackets. What does
that mean?

The hypotheses between brackets are used for hypothetical derivation
and are discharged when using the rule. They are not real hypothesis
for the derivation.

For instance,

[A]
...
B

(I→)
A→ B

means: “if assuming A you can deduce that B, then you can deduced
A→ B”.

Christophe Garion IN324 Software Validation – deductive methods 48/ 149

What are those [] everywhere?

Some premises in rules (E∨) and (I→) are between brackets. What does
that mean?

The hypotheses between brackets are used for hypothetical derivation
and are discharged when using the rule. They are not real hypothesis
for the derivation.

N.B. (important)
The discharged hypothesis are only valid in the rule context and cannot
be used for instance below the rule application.

N.B.
When introducing hypothesis (not premises of the argument), you have
to discharge them to obtain a valid proof.

Christophe Garion IN324 Software Validation – deductive methods 48/ 149

How to discharge hypotheses

In order to remember where hypotheses are discharged, rule numbering
can be used:

[a]1 [b]2
(I∧)

a ∧ b
(I→)2

b → (a ∧ b)
(I→)1

a → (b → (a ∧ b))

Subdeductions are hypothetical: in the previous example, b → (a ∧ b)
can be deduced under the assumption a.

Christophe Garion IN324 Software Validation – deductive methods 49/ 149

From minimal system to classical system

The previous system is minimal: it does not correspond to classical logic.
The following rules have to be added.

Definition (rules for intuitionist system)
⊥

(E⊥)
A

¬A ≡ A→ ⊥

Definition (rules for classical system)
(EM)

A ∨ ¬A
[¬A]

...
⊥

(A)
A

Christophe Garion IN324 Software Validation – deductive methods 50/ 149

Let’s prove some formulae! .

Exercise
Prove the following PL formulas in NK:

(a → (b → c))→ ((a → b)→ (a → c))
((a ∨ b)→ c)→ (b → c)
((a ∨ b) ∧ (a → c) ∧ (b → c))→ c
a → ¬¬a

Christophe Garion IN324 Software Validation – deductive methods 51/ 149

Try it on your computer?

Adopt a Panda!

The panda (Ailuropoda
melanoleuca, lit. “black and white
cat-foot”), also known as the giant
panda to distinguish it from the
unrelated red panda, is a bear native
to central-western and south western
China. (Wikipedia, 2012.)

Gasquet, Olivier, François Schwarzentruber, and Martin Strecker
(2011).
Panda: Proof Assistant for Natural Deduction for All.
http://www.irit.fr/panda/.

Christophe Garion IN324 Software Validation – deductive methods 52/ 149

http://www.irit.fr/panda/

Outline of part 2 - Formal proof

5 Formal systems

6 Natural deduction for PL: NK
Deductive system
A new language: sequents for NK

7 Natural deduction for FOL: NK

Christophe Garion IN324 Software Validation – deductive methods 53/ 149

Sequent

Gentzen also proposed a new language based on LPLin order to make
proof in NK easier (in particular for discharged hypotheses).

The main idea of this new language is to “embark” the hypotheses you
are using in the “formulas”.

Definition (sequent)
A sequent is composed of a finite set of wff Γ and a wff ϕ and is
denoted by Γ ` ϕ.

The intuition behind sequent is the following: Γ ` ϕ means “ϕ can be
deduced from hypotheses Γ”.
Γ is also called the context.

Some (false) notations are used: for instance Γ, ψ ` ϕ is used for
Γ ∪ {ψ} ` ϕ.

Christophe Garion IN324 Software Validation – deductive methods 54/ 149

Rules for sequent-based NK

Definition (axiom and structural rule)

(Hyp)
A ` A Γ ` A

(Aff)
Γ,B ` A

Rules for sequent-based NK

Definition (logical rules)

Γ ` A Γ ` B
(I∧)

Γ ` A ∧ B
Γ ` A ∧ B

(E1
∧)

Γ ` A
Γ ` A ∧ B

(E2
∧)

Γ ` B

Γ ` A
(I1∨)

Γ ` A ∨ B
Γ ` B

(I2∨)
Γ ` A ∨ B

Γ ` A ∨ B Γ,A ` C Γ,B ` C
(E∨)

Γ ` C

Γ,A ` B
(I→)

Γ ` A→ B
Γ,A ` B Γ ` A

(E→)
Γ ` B

Γ,A→ ⊥ ` ⊥
(TE)

Γ ` A
Γ ` ⊥

(E⊥)
Γ ` A

NK with sequents: example

With the previous example:

(Hyp)
a ` a

(Aff)
a, b ` a

(Hyp)
b ` b

(Aff)
a, b ` b

(I∧)
a, b ` a ∧ b

(I→)
a ` b → (a ∧ b)

(I→)
` a → (b → (a ∧ b))

Christophe Garion IN324 Software Validation – deductive methods 56/ 149

Automatic proof of the previous wffs?

Building proofs of the previous formulas is not automatic and can be
fastidious. Is there an algorithm to prove that a wff is a theorem?

This field of study is called automated theorem proving. Some
theorem provers:

The E Theorem Prover (http://www.eprover.org)
Vampire (http://www.vprover.org)
SPASS (http://www.spass-prover.org)

Notice that:
theorem proving is decidable for PL
this problem is strongly related to the SAT problem
the provers presented here also work with First-Order Logic

Christophe Garion IN324 Software Validation – deductive methods 57/ 149

http://www.eprover.org
http://www.vprover.org
http://www.spass-prover.org

Use SPASS on our examples

Let us try SPASS on our examples.

The SPASS team (2014).
SPASS: An Automated Theorem Prover for First-Order
Logic with Equality.
http://www.spass-prover.org.

Christophe Garion IN324 Software Validation – deductive methods 58/ 149

http://www.spass-prover.org

Use SPASS on our examples

Let us try SPASS on our examples.

begin_problem(pl_1).

list_of_descriptions.
name({*(A -> (B -> C)) -> ((A -> B) -> (A -> C))*}).
author({*Christophe Garion*}).
status(satisfiable).
description({*Prove (A -> (B -> C)) -> ((A -> B) -> (A -> C))...*}).

end_of_list.

list_of_symbols.
predicates[(A,0), (B,0), (C,0)].

end_of_list.

list_of_formulae(conjectures).
formula(implies(implies(A, implies(B, C)), implies(implies(A, B),

implies(A, C)))).
end_of_list.

end_problem.

Christophe Garion IN324 Software Validation – deductive methods 58/ 149

Outline of part 2 - Formal proof

5 Formal systems

6 Natural deduction for PL: NK

7 Natural deduction for FOL: NK
First-order logic language
Deductive system

Christophe Garion IN324 Software Validation – deductive methods 59/ 149

Outline of part 2 - Formal proof

5 Formal systems

6 Natural deduction for PL: NK

7 Natural deduction for FOL: NK
First-order logic language
Deductive system

Christophe Garion IN324 Software Validation – deductive methods 60/ 149

Alphabet

Definition (alphabet)
The alphabet of LFOL is composed of:

logical symbols
an inifinite and enumerable set V of individual variables x , y , . . .
connectors: >,⊥,¬,→,∧,∨,↔
quantifiers: ∃, ∀
, ()

non-logical symbols
an enumerable set P of predicate symbols P ,Q,R , . . .
an enumerable set F of functions f , g , h, . . .
an enumerable set C of individual constants a, b, c, . . .

Christophe Garion IN324 Software Validation – deductive methods 61/ 149

Signature of a first-order language

Like in the propositional case, V, >, ⊥, ¬, ∨, →, ↔, (,) and are called
logical symbols because their logical meaning is already defined.

On the contrary, P, F and C depend on the problem to be modelled and
thus the predicate, function and constant symbols are called non-logical
symbols. It is also called the signature S of the language.

So, when you want to model a problem using LFOL, you first have to
define the signature of your language, i.e. S = 〈P,F , C〉.

When defining predicates and functions, the arity is often denoted using
the / notation:

P/2 a predicate P of arity 2
f /3 a function f of arity 3

Christophe Garion IN324 Software Validation – deductive methods 62/ 149

LFOL terms

An expression is a sequence of symbols.

Some expressions, called terms, represents objects.

ex: Socrates, John’s father, 3+(2+5), …

Definition (term)
The set of terms of LFOL is defined inductively by:

a variable is a term
a constant is a term
if f is a function symbol with arity m and if t1, . . . , tm are terms,
then f (t1, . . . , tm) is a term

Christophe Garion IN324 Software Validation – deductive methods 63/ 149

Well-formed formulas
Some expressions are interpreted as assertions. Those expressions are
well formed formulas (wffs).

Definition (atomic formula)
If P is a predicate symbol with arity n and if t1, . . . , tn are terms, then
P(t1, . . . , tn) is an atomic formula of LFOL.

Definition (well formed formula)
The set of wff of LFOL is defined inductively as follows:

an atomic formula is a wff
> and ⊥ are wffs
if ϕ and ψ are wffs, then (¬ϕ), (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ→ ψ) and
(ϕ↔ ψ) are wffs
if ϕ is a wff and x is a variable, then (Qx ϕ) where Q ∈ {∀,∃} is
a wff
ϕ is called the scope of Qx (cf. later).

Some conventions (as in the PL case)

To simplify the writing, some conventions can be used:
removing of external parentheses: (a ∧ b) ; a ∧ b
¬ is written without parentheses: (¬a) ; ¬a
connectors are associative from left to right:
((a ∧ b) ∧ c) ; a ∧ b ∧ c
quantifiers sequences can be simplified: Q1x(Q2y ϕ) ; Q1xQ2y ϕ

Connectors and quantifiers can be ordered by growing priority like in the
PL case:

∀ ∃ ↔ → ∨ ∧ ¬

Christophe Garion IN324 Software Validation – deductive methods 65/ 149

Some remarks on LFOL

Constants can also be viewed as 0-ary functions, i.e. functions that does
not take parameters. We use a distinct set C to simplify the presentation
of FOL semantics.

If you consider a FO language whose signature is the following:
C = ∅
F = ∅
every predicate symbol P in P is a 0-ary symbol, i.e. it does not
take parameters

then you obtain propositional logic. Thus, PL is a subset of FOL.

Christophe Garion IN324 Software Validation – deductive methods 66/ 149

Modelling exercise: maths, again… .

Exercise
Let E be a set. Model the following mathematical notions using a
first-order language. Define precisely the signature of the language.

= define the “classical” equality relation on E (not easy!)
≤ is a preorder on E
(E , .) is a monoid

Christophe Garion IN324 Software Validation – deductive methods 67/ 149

A correct definition of scope

We have defined the scope of a formula Qx ϕ to be ϕ, but is it really
the case?

Consider for instance ∀x (P(x)→ (∃x Q(x))). If the intuitive meaning
of the scope of ∀x is to define the formula in which you can replace x by
“what you want”, it is false.

Using the syntax tree, we can define scope in a better way:

Definition (scope)
Let Qx ϕ be a wff with Q ∈ {∀,∃}. The scope of Qx in Qx ϕ
is the subtree of Qx in ST (Qx ϕ) minus the subtrees in ST (Qx ϕ)
reintroducing a new quantifier for x .

With this definition the scope of ∀x in ∀x (P(x)→ (∃x Q(x))) is only
P(x).

Christophe Garion IN324 Software Validation – deductive methods 68/ 149

A correct definition of scope

We have defined the scope of a formula Qx ϕ to be ϕ, but is it really
the case?

Consider for instance ∀x (P(x)→ (∃x Q(x))). If the intuitive meaning
of the scope of ∀x is to define the formula in which you can replace x by
“what you want”, it is false.

N.B. (important)
Avoid reintroducing new quantifiers for a previously quantified variable
in wff!

For instance, rewrite the previous formula as ∀x (P(x)→ (∃y Q(y)))
which is unambiguous.

Christophe Garion IN324 Software Validation – deductive methods 68/ 149

Free and bound variables

Definition (free and bound variables)
The set BV of bound variables and FV of free variables of a wff ϕ
are defined inductively as follows:

if ϕ is an atomic formula P(t1, . . . , tn), then BV (ϕ) = ∅ and
FV (ϕ) = {ti |i ∈ {1, . . . , n} and ti is a variable}
if ϕ ≡ ¬ϕ1 then BV (ϕ) = BV (ϕ1) and FV (ϕ) = FV (ϕ1)

if ϕ ≡ ϕ1 conn ϕ2 where conn ∈ {∧,∨,→,↔} then
BV (ϕ) = BV (ϕ1) ∪ BV (ϕ2) and FV (ϕ) = FV (ϕ1) ∪ FV (ϕ2)

if ϕ ≡ Qx ϕ1 where Q ∈ {∀,∃}, then BV (ϕ) = BV (ϕ1) ∪ {x}
and FV (ϕ) = FV (ϕ1)− {x}

Definition (closed formula)
A closed formula is a formula ϕ such that FV (ϕ) = ∅.

Christophe Garion IN324 Software Validation – deductive methods 69/ 149

Free and bound variables: examples

free bound

(∃x P(x)) ∧ (∀y ¬Q(y)) ∧ R(z)

(∃x P(x)) ∧ Q(x)

N.B.
When modelling “real” notions, it is very difficult to use open formulas
(i.e. non closed formulas).

Christophe Garion IN324 Software Validation – deductive methods 70/ 149

Substitutions

As variables are placeholders, we should be able to replace them with
concrete (or not) terms.

Definition (substitution)
Let ϕ be a wff, x a variable and t a term. ϕ[x/t] denotes the formula
obtained by replacing all free occurrences of x in ϕ by t.

You will sometimes find the “contrary” in some textbook, i.e. [t/x]
meaning “replace x by t”.

Examples:

P(x)[x/y] ≡ P(y)
P(x)[x/x] ≡ P(x)
(P(x)→ ∀x P(x))[x/y] ≡ (P(y)→ ∀x P(x))

Using the syntax tree of ϕ, it means replacing all x nodes by the syntax
tree of t.

Christophe Garion IN324 Software Validation – deductive methods 71/ 149

Free substitutions

Substitution should preserve validity in semantics.

Let us consider ∃y P(x , y). Can x be substituted by y in this formula?
å no, as you change the meaning of the formula!

Definition (free substitution)
A term t is freely substitutable to x in ϕ if

ϕ is an atomic formula
ϕ ≡ ¬ϕ1 and t is freely substituable to x in ϕ1

ϕ ≡ ϕ1 conn ϕ2 where conn ∈ {∧,∨,→,↔} and t is freely
substituable to x in ϕ1 and ϕ2

ϕ ≡ Qy ϕ1 where Q ∈ {∀,∃} and
x and y are the same variable
y is not a variable of t and t is freely substitutable for x in ϕ1

Christophe Garion IN324 Software Validation – deductive methods 72/ 149

Outline of part 2 - Formal proof

5 Formal systems

6 Natural deduction for PL: NK

7 Natural deduction for FOL: NK
First-order logic language
Deductive system

Christophe Garion IN324 Software Validation – deductive methods 73/ 149

Rules for natural deduction for FOL

As PL is a subset of FOL, all rules defined for PL are also valid for PL.

Rules have to be added for quantifiers (x is supposed to be free in A):

Definition (intr. and elim. rules for quantifiers)

A
(I∀)∀x A

∀x A
(E∀)A[x/t]

A[x/t]
(I∃)∃x A

∃x A

[A]
...
B

(E∃)B

Christophe Garion IN324 Software Validation – deductive methods 74/ 149

Rules for natural deduction for FOL: sequent view

Definition (intr. and elim. rules for quantifiers)

Γ ` A
(I∀)

Γ ` ∀x A
Γ ` ∀x A

(E∀)
Γ ` A[x/t]

Γ ` A[x/t]
(I∃)

Γ ` ∃x A
Γ ` ∃x A

(E∃)
Γ ` A[x/f (y1, . . . , fn)]

where x 6∈ FV (Γ) in (I∀) and FV (∃x A) = {yi | i ∈ {1, . . . , n}}.

Christophe Garion IN324 Software Validation – deductive methods 75/ 149

Let’s prove some formulae!

Exercise
Prove the following FOL formulas in NK:

(∀x ϕ ∧ ψ)→ (∀x ϕ ∧ ∀x ψ)

∃x∀y ϕ→ ∀y∃x ϕ

Christophe Garion IN324 Software Validation – deductive methods 76/ 149

Automatic proof of FOL wffs?

We can ask ourselves again if it is possible to build automatically proofs
of the previous formulas.

Unfortunately, as First-Order Logic is not decidable (but ony
semi-decidable), it is not possible to automatically prove all the possible
theorems of FOL.

The previously presented theorem provers (E, Vampire, SPASS) can
although be used to prove the previous formulas.

Christophe Garion IN324 Software Validation – deductive methods 77/ 149

Use SPASS on our examples

begin_problem(fol_1).

list_of_descriptions.
name({*(forall x Phi(x) /\ Psi(x)) ->

(forall x Phi(x)) /\ (forall x Psi(x))*}).
author({*Christophe Garion*}).
status(satisfiable).
description({*Prove (forall x Phi(x) /\ Psi(x)) ->

(forall x Phi(x)) /\ (forall x Psi(x))...*}).
end_of_list.

list_of_symbols.
predicates[(Phi,1), (Psi,1)].

end_of_list.

list_of_formulae(conjectures).
formula(implies(forall([X], and(Phi(X), Psi(X))),

and(forall([X], Phi(X)), forall([X], Psi(X))))).
end_of_list.

end_problem.

Christophe Garion IN324 Software Validation – deductive methods 78/ 149

Outline of part 3 - The Floyd-Hoare logic

3 - The Floyd-Hoare logic

8 Imperative programs

9 The Floyd-Hoare deductive system

Christophe Garion IN324 Software Validation – deductive methods 79/ 149

Outline of part 3 - The Floyd-Hoare logic

8 Imperative programs

9 The Floyd-Hoare deductive system

Christophe Garion IN324 Software Validation – deductive methods 80/ 149

What kind of program do we want to “prove”?

Definition (imperative kernel)
The imperative kernel of a programming language is defined by the
five following constructs: declaration, assignment, sequence, con-
ditional, loop.

Theorem (Böhm-Jacopini,1966)
Algorithms combining subprograms using only the three following con-
trol structures can compute any computable function:

sequence (denoted by “P;Q”)
selection using boolean expression (denoted by
“if C then P else Q fi”)
iteration while a boolean condition is true (denoted by
“while C do P od”)

where P and Q are subprograms and C is a boolean expression.

å we will use only those three control structures in the following.

What kind of program do we want to “prove”?

Definition (assignment)
The assignment operator is denoted by :=.

But no declaration operator…
å types of variables will be “obvious”

By convention, we will use uppercase latin letters for variable names (X,
Y, etc.).

Usual operators on integers like +, ∗ etc. are available to build
expressions that can be used on the right side of :=.

N.B.
Expressions used on the right side of := (rvalues) cannot have side
effects!

Outline of part 3 - The Floyd-Hoare logic

8 Imperative programs

9 The Floyd-Hoare deductive system
Rules for partial correctness
Rule for total correctness

Christophe Garion IN324 Software Validation – deductive methods 82/ 149

Hoare triple

Definition (Hoare triple)
A Hoare triple is denoted by {ϕ} P {ψ} where:

ϕ is a first-order logic wff called the precondition
P is a program as defined previously
ψ is a first-order logic wff called the postcondition

Intuition
{ϕ} P {ψ} is true iff when starting from a state where ϕ is true,
executing P leads to a state where ψ is true.

The terms used in ϕ and ψ generally speak about the state of the
program.

Christophe Garion IN324 Software Validation – deductive methods 83/ 149

What do we want to prove?

The Hoare triple of a program P is given as a specification of P.

Floyd-Hoare logic provides a formal system FH to reason on Hoare
triples for each primitive programming construct.

So, proving that P is correct wrt. its specifications ϕ and ψ is proving
that {ϕ} P {ψ} is a theorem in FH.

Hoare, C. A. R. (1969).
“An axiomatic basis for computer programming”.
In: Communications of the ACM 12.10,
Pp. 576–580.

Christophe Garion IN324 Software Validation – deductive methods 84/ 149

Outline of part 3 - The Floyd-Hoare logic

8 Imperative programs

9 The Floyd-Hoare deductive system
Rules for partial correctness
Rule for total correctness

Christophe Garion IN324 Software Validation – deductive methods 85/ 149

Rule for assignment

Definition (rule for assignment)

(:=)
{ϕ[X/E]} X := E {ϕ}

Exercise
Find ϕ such that:

(:=)
{ϕ} X := X + 1 {X = 4}

(:=)
{ϕ} F := F * K {F = K !}

(:=)
{ϕ} K := K + 1 {F = (K − 1)!}

Assignment rule: why?

You may feel the previous axiom to be “backwards” from what your
intuition says. But, if the axiom were

(:=)
{ϕ} X := E {ϕ[X/E]}

what is the postcondition ψ in {X = 0} X := 1 {ψ}?

There is in fact a assignment axiom (from Floyd) which is the following:

(:=)
{ϕ} X := E {∃v ((X = E [X/v]) ∧ ϕ[X/v])}

where v is a new variable.

This rule is more complicated to use due to the existentially quantified
variable, but it works!

Christophe Garion IN324 Software Validation – deductive methods 87/ 149

Rule for sequence

Definition (rule for sequence)

{ϕ} P {γ} {γ} Q {ψ}
(Seq)

{ϕ} P;Q {ψ}

Example:

(:=)
{(A + X ≥ 0)[A/0]} A := 0 {A + X ≥ 0}

(:=)
{(A + B ≥ 0)[B/X]} B := X {A + B ≥ 0}

(Seq)
{X ≥ 0} A := 0; B := X {A + B ≥ 0}

From now on, we will annote programs instead of writing the proof tree.

Christophe Garion IN324 Software Validation – deductive methods 88/ 149

Is the sequence rule sufficient?

Is it possible to prove the following program using only the affectation
and the sequence rules?

{X ≥ 0}
A := 1
B := X;
{A + B ≥ 0}

Christophe Garion IN324 Software Validation – deductive methods 89/ 149

Consequence rule

Definition (consequence rule)

ϕ→ ϕ′ {ϕ′} P {ψ′} ψ′ → ψ
(Cons)

{ϕ} P {ψ}

Two derived rules:

Definition (strenghtening of precondition)

ϕ→ ϕ′ {ϕ′} P {ψ}
(Str)

{ϕ} P {ψ}

Definition (weakening of postcondition)

{ϕ} P {ψ′} ψ′ → ψ
(Weak)

{ϕ} P {ψ}

Consequence rule

Definition (consequence rule)

ϕ→ ϕ′ {ϕ′} P {ψ′} ψ′ → ψ
(Cons)

{ϕ} P {ψ}

ϕ→ ϕ′ and ψ′ → ψ are called proof obligations.

They are often proved by an external theorem prover.

They are the most “difficult parts” of the proof, as they may involve
(complex) mathematics.

Conditional rule

Definition (rule for conditional)

{ϕ ∧ C} P {ψ} {ϕ ∧ ¬C} Q {ψ}
(Cond.)

{ϕ} if C then P else Q fi {ψ}

Exercise
Prove the following Hoare triple:

{>} if Y=0 then X := Y else X := 0 fi {X = 0}

Christophe Garion IN324 Software Validation – deductive methods 91/ 149

Iteration

Definition (rule for iteration)

{ϕ ∧ C} P {ϕ}
(It.)

{ϕ} while C do P od {ϕ ∧ ¬C}

Definition (invariant)
In the previous rule, ϕ is called the invariant.
ϕ is a FOL formula that is true before the first call to P and is true
at each iteration and at the end of the loop.

Christophe Garion IN324 Software Validation – deductive methods 92/ 149

Iteration

Definition (rule for iteration)

{ϕ ∧ C} P {ϕ}
(It.)

{ϕ} while C do P od {ϕ ∧ ¬C}

Exercise
Prove the following Hoare triple:

{X ≥ 0} while X<B do X := X+1 od {X ≥ 0 ∧ ¬(X < B)}

Christophe Garion IN324 Software Validation – deductive methods 92/ 149

Partial vs. total correctness

What does happen if P does not terminate?
å we have to prove also that P terminates (loops…)

Definition (partial correctness)
A program P is partially correct wrt. to its specifications ϕ and ψ iff
whenever starting from a state where ϕ is true and executing P, if P
terminates, then the resulting state will satisfy ψ.

Definition (total correctness)
A program P is totally correct wrt. to its specifications ϕ and ψ iff P
is partially correct wrt. to ϕ and ψ and P terminates.

Christophe Garion IN324 Software Validation – deductive methods 93/ 149

Outline of part 3 - The Floyd-Hoare logic

8 Imperative programs

9 The Floyd-Hoare deductive system
Rules for partial correctness
Rule for total correctness

Christophe Garion IN324 Software Validation – deductive methods 94/ 149

How to prove that the program terminate?

Intuition
In order to prove that a program terminate, find an expression e and
a well-founded relation ≺ such that e decreases wrt ≺ during the
execution.

In practise, e is often a function of the program variables returning a
value in N.

Only one rule has to be modified: the iteration rule.

Christophe Garion IN324 Software Validation – deductive methods 95/ 149

Rule for iteration

Definition (rule for iteration)

{ϕ ∧ C ∧ v = V } P {ϕ ∧ v ≺ V } ≺ is wf
(It.)

{ϕ} while C do P od {ϕ ∧ ¬C}

Definition (variant)
In the previous rule, v is called the variant.

Christophe Garion IN324 Software Validation – deductive methods 96/ 149

Exercise: growing… .

Prove the following program:

{N ≥ 0}
K := 0
F := 1
while (K 6= N) do

K := K + 1;
F := F * K

od
{F = N!}

Christophe Garion IN324 Software Validation – deductive methods 97/ 149

Exercise: decreasing… .

Prove the following program:

{N ≥ 0}
K := N;
F := 1;
while (K 6= 0) do

F := F * K;
K := K - 1

od
{F = N!}

Christophe Garion IN324 Software Validation – deductive methods 98/ 149

Exercise: divide ut imperes .

Prove the following program:

{X ≥ 0 ∧ Y > 0}
Q := 0;
R := X;
while (Y ≤ R) do

Q := Q + 1;
R := R - Y

od
{X = Q × Y + R ∧ 0 ≤ Q ∧ 0 ≤ R < Y }

Christophe Garion IN324 Software Validation – deductive methods 99/ 149

Exercise: hello Euclid! .

Prove the following program:

{A > 0 ∧ B > 0}
X := A;
Y := B;
while (X 6= Y) do

if (X > Y) then
X := X - Y

else
Y := Y - X

fi
od
{X = Y ∧ X > 0 ∧ X = gcd(A,B)}

Christophe Garion IN324 Software Validation – deductive methods 100/ 149

Outline of part 4 -
Aut. verification of imperative programs

4 - Automatic verification of
imperative programs

10 Introduction on automated verification

11 Automated theorem proving

12 Generating verification conditions

13 Annotation language for C programs

Christophe Garion IN324 Software Validation – deductive methods 101/ 149

Outline of part 4 -
Aut. verification of imperative programs

10 Introduction on automated verification

11 Automated theorem proving

12 Generating verification conditions

13 Annotation language for C programs

Christophe Garion IN324 Software Validation – deductive methods 102/ 149

Why automating verification?

Hoare logic is a formal system for proving imperative programs, but:
proof obligations can be complicated and use complex theories
for larger programs, you cannot do proofs “by hand”
programming languages have (often) more constructs than those
presented (e.g. pointers)

Conclusion
Program verification should be automated.

Christophe Garion IN324 Software Validation – deductive methods 103/ 149

Automatizing verification: the principles

prog. language
+ annotations

VC

ATP

Christophe Garion IN324 Software Validation – deductive methods 104/ 149

Automatizing verification: the principles

prog. language
+ annotations

VC

ATP

Annotations
extends prog. language syntax
with pre/post-conditions,
invariants etc.
extension to first-order logic
often represented by comments

Christophe Garion IN324 Software Validation – deductive methods 104/ 149

Automatizing verification: the principles

prog. language
+ annotations

VC

ATP

Verification conditions
Annotated programs are translated by
a verification conditions generator into
verification conditions (VC).
Verification conditions are logical
properties that should hold for the pro-
gram to be correct.
They are often used with several par-
ticular domain theories.

Christophe Garion IN324 Software Validation – deductive methods 104/ 149

Automatizing verification: the principles

prog. language
+ annotations

VC

ATP

Automated theorem prover
An automated theorem prover is a
software being able to prove that a
given wff is a theorem.

Christophe Garion IN324 Software Validation – deductive methods 104/ 149

Outline of part 4 -
Aut. verification of imperative programs

10 Introduction on automated verification

11 Automated theorem proving

12 Generating verification conditions

13 Annotation language for C programs

Christophe Garion IN324 Software Validation – deductive methods 105/ 149

Is it difficult to prove theorems?

Proving that a formula ϕ is a theorem is equivalent to proving that ϕ is
valid (i.e. always true). This is also equivalent to proving that ¬ϕ is not
satisfiable…

Theorem (Cook, 1971)
The SAT problem (i.e. verifying the satisfiability of a propositional
formula) is NP-complete.

å SAT is difficult to solve, but there are instances that can be solved
efficiently

å proving that a wff is a tautology/a theorem is Co-NP-complete!

Christophe Garion IN324 Software Validation – deductive methods 106/ 149

And for FOL?

Remember that proof obligations, invariants etc. use first-order
theories, like arithmetics, linear inequalities etc.

Theorem
The decision problem for FOL, i.e. determining if a FOL wff is valid/a
theorem or not, is not decidable.

å OK, so end of the story?
å No, some first-order theories are decidable:

Pressburger arithmetics
real numbers (!!!)
etc.

å We have seen that we can use theorem provers like SPASS to prove
some wffs.

In the following we will use SMT solvers.

Christophe Garion IN324 Software Validation – deductive methods 107/ 149

Satisfiability Modulo Theory

Definition (informal)
A Satisfiability Modulo Theory (SMT) problem is a decision problem
based on SAT where the interpretation of some symbols is constrained
by a background theory.

Barrett, Clark et al. (2009).
“Satisfiability Modulo Theories”.
In:
Handbook of Satisfiability.
Ed. by Armin Biere et al.
Vol. 185.
Frontiers in Artificial Intelligence and Applications.
IOS Press.
Chap. 26, pp. 825–885.
isbn: 978-1-58603-929-5.

Christophe Garion IN324 Software Validation – deductive methods 108/ 149

Satisfiability Modulo Theory

Definition (informal)
A Satisfiability Modulo Theory (SMT) problem is a decision problem
based on SAT where the interpretation of some symbols is constrained
by a background theory.

For instance:

(3x + 2y ≥ 3) ∧ (x − z < 2) ∨ (z + y ≤ x)

Christophe Garion IN324 Software Validation – deductive methods 108/ 149

SMT solver used: Alt-Ergo

We will use Alt-Ergo, a SMT solver written in OCaml:

Conchon, Sylvain and Evelyne Contejean (2013).
Alt-Ergo, an OCaml SMT-solver for software verification.
http://alt-ergo.lri.fr/.

There are other interesting SMT solvers:
Z3 (z3.codeplex.com)
CVC4 (http://cvc4.cs.nyu.edu/web/)

Christophe Garion IN324 Software Validation – deductive methods 109/ 149

http://alt-ergo.lri.fr/
z3.codeplex.com
http://cvc4.cs.nyu.edu/web/

SMT solver used: Alt-Ergo

Beware, Alt-Ergo cannot prove every theorem of FOL, for instance:

type E

logic phi : E -> prop
logic psi : E -> prop

logic phi2 : E, E -> prop

logic a: E

goal Th_1 : (forall x : E. phi(x) and psi(x)) ->
(forall x : E. phi(x)) and (forall x : E. psi(x))

goal Th_2 : (exists x : E. forall y : E. phi2(x, y)) ->
(forall y : E. exists x : E. phi2(x, y))

goal Th_3 : (forall y : E. exists x : E. phi2(x, y)) ->
(exists x : E. forall y : E. phi2(x, y))

goal Th_4 : (forall y : E. phi2(a, y)) ->
(exists x : E. forall y : E. phi2(x, y))

Christophe Garion IN324 Software Validation – deductive methods 109/ 149

SMT solver used: Alt-Ergo

Alt-Ergo has been designed to be used for program verification, so it can
solve problems we will have for proving programs:

goal arith_1 :
forall x, y : int.

2 * y - x <= 0 and -8 * y + x + 2 <= 0 and 2 * y + x - 3 <= 0
-> false

goal arith_2 :
forall x, y : int. x * (x + 1) = y -> x * x = y - x

goal arith_non_linear_1 :
forall x, y : int.

2 <= x <= 6 and -3 <= y < 0 ->
-84 <= 3 * x + 2 * y + 4 * x * y + 2 * (x / y) <= 6

goal arith_non_linear_2 :
forall x, y : int.

2 <= x <= 6 and -3 <= y < 0 ->
-64 <= 3 * x + 2 * y + 4 * x * y + 2 * (x / y) <= -8

Christophe Garion IN324 Software Validation – deductive methods 109/ 149

Outline of part 4 -
Aut. verification of imperative programs

10 Introduction on automated verification

11 Automated theorem proving

12 Generating verification conditions

13 Annotation language for C programs

Christophe Garion IN324 Software Validation – deductive methods 110/ 149

Verification conditions: how to generate them?

Verification conditions are purely logical formulas automatically
generated from an annotated program.

Dijdkstra’s seminal work on predicate transformer semantics gives a
complete strategy (either by weakest preconditions or strongest
postconditions) to build theorems in FH logic.

Dijkstra, Edger W. (1975).
“Guarded commands, nondeterminacy and formal derivation of
program”.
In: Communications of the ACM 18.8,
Pp. 453–457.

Christophe Garion IN324 Software Validation – deductive methods 111/ 149

Condition on program for VC generation

In order to automatize VC generation, the program should contain
enough assertions.

Definition (properly annotated program)
A program is properly annotated if there is an assertion:

before each subprogram Ci (i > 1) in a sequence C1;C2;...;Cn
which is not an assignment command
for each loop invariant

N.B.
Generation of loop invariants is generally undecidable.

Christophe Garion IN324 Software Validation – deductive methods 112/ 149

Completely annotated program: example

{X ≥ 0 ∧ Y > 0}
Q := 0;
R := X;
{R = X ∧ R ≥ 0 ∧ Q = 0}
while (Y ≤ R) do

{X = R + (Q × Y) ∧ R ≥ 0 ∧ Q ≥ 0} ← loop invariant
Q := Q + 1;
R := R - Y

od
{X = Q × Y + R ∧ 0 ≤ Q ∧ 0 ≤ R < Y }

Christophe Garion IN324 Software Validation – deductive methods 113/ 149

Generating VC for assignment commands

Definition (generation of VC for assignment)
The VC generated by {ϕ} X := E {ψ} is

ϕ→ ψ[X/E]

For instance, the VC generated by

{X = 0} X := X + 1 {X = 1}

is

(X = 0)→ (X + 1) = 1

Christophe Garion IN324 Software Validation – deductive methods 114/ 149

Generating VC for conditionals

Definition (generation of VC for conditional)
The VC generated by

{ϕ} if C then P else Q {ψ}

are
1 the VC generated from {ϕ ∧ C} P {ψ}
2 the VC generated from {ϕ ∧ ¬C} Q {ψ}

Christophe Garion IN324 Software Validation – deductive methods 115/ 149

Generating VC for sequences

Definition (generation of VC for sequence (case 1))
The VC generated by

{ϕ}C1; C2; ...;Cn-1;{ϕ′}Cn{ψ}

where Cn is not an assignment are
1 the VC generated from {ϕ} C1; C2; ...;Cn-1 {ϕ′}
2 the VC generated from {ϕ′} Cn {ψ}

Definition (generation of VC for sequence (case 2))
The VC generated by

{ϕ} C1; C2; ...;Cn-1; X := E {ψ}

are the VC generated from

{ϕ} C1; C2; ...;Cn-1 {ψ[X/E]}

Generating VC for iterations

Definition (generation of VC for iteration)
The VC generated by

{ϕ} while C do P od {ψ}

with invariant ϕi are
1 ϕ→ ϕi
2 ϕi ∧ ¬C → ψ

3 the VC generated by
{ϕi ∧ C} P {ϕi}

Christophe Garion IN324 Software Validation – deductive methods 117/ 149

Generating VC: example

1 {X ≥ 0 ∧ Y > 0}
2 Q := 0;
3 R := X;
4 {R = X ∧ R ≥ 0 ∧ Q = 0}
5 while (Y ≤ R) do
6 {X = R + (Q × Y) ∧ R ≥ 0 ∧ Q ≥ 0}
7 Q := Q + 1;
8 R := R - Y
9 od

10 {X = Q × Y + R ∧ 0 ≤ Q ∧ 0 ≤ R < Y }

Applying VC generation for sequence on line 5 gives…

Christophe Garion IN324 Software Validation – deductive methods 118/ 149

Generating VC: example

1 {X ≥ 0 ∧ Y > 0}
2 Q := 0;
3 R := X;
4 {R = X ∧ R ≥ 0 ∧ Q = 0}

1 {R = X ∧ R ≥ 0 ∧ Q = 0}
2 while (Y ≤ R) do
3 {X = R + (Q × Y) ∧ R ≥ 0 ∧ Q ≥ 0}
4 Q := Q + 1;
5 R := R - Y
6 od
7 {X = Q × Y + R ∧ 0 ≤ Q ∧ 0 ≤ R < Y }

Christophe Garion IN324 Software Validation – deductive methods 119/ 149

Generating VC: example

1 {X ≥ 0 ∧ Y > 0}
2 Q := 0;
3 R := X;
4 {R = X ∧ R ≥ 0 ∧ Q = 0}

Applying VC generation for sequence two times gives:

(X ≥ 0 ∧ Y > 0)→ (X = X ∧ X ≥ 0 ∧ 0 = 0)

Christophe Garion IN324 Software Validation – deductive methods 120/ 149

Generating VC: example

1 {R = X ∧ R ≥ 0 ∧ Q = 0}
2 while (Y ≤ R) do
3 {X = R + (Q × Y) ∧ R ≥ 0 ∧ Q ≥ 0}
4 Q := Q + 1;
5 R := R - Y
6 od
7 {X = Q × Y + R ∧ 0 ≤ Q ∧ 0 ≤ R < Y }

Applying VC generation for iteration gives:

(R = X ∧ R ≥ 0 ∧ Q = 0)→ (X = R + (Q × Y) ∧ R ≥ 0 ∧ Q ≥ 0)

(X = R + (Q × Y) ∧ R ≥ 0 ∧ Q ≥ 0 ∧ ¬(Y ≤ R))→
(X = Q × Y + R ∧ 0 ≤ Q ∧ 0 ≤ R < Y)

and VC generated from the inner part of the loop (lines 4 et 5, cf. next
slide).

Christophe Garion IN324 Software Validation – deductive methods 121/ 149

Generating VC: example

1 {X = R + (Q × Y) ∧ R ≥ 0 ∧ Q ≥ 0 ∧ Y ≤ R}
2 Q := Q + 1;
3 R := R - Y
4 {X = R + (Q × Y) ∧ R ≥ 0 ∧ Q ≥ 0}

Applying VC generation for this sequences gives:

(X = R + (Q × Y) ∧ R ≥ 0 ∧ Q ≥ 0 ∧ Y ≤ R)→
(X = (R − Y) + ((Q + 1)× Y) ∧ R − Y ≥ 0 ∧ Q + 1 ≥ 0)

Christophe Garion IN324 Software Validation – deductive methods 122/ 149

Using Alt-Ergo on generated VC…

goal VC_1 :
forall X, Y : int.

(X >= 0) and (Y > 0) -> (X = X) and (X >= 0) and (0 = 0)

goal VC_2 :
forall X, Y, R, Q : int.

(R = X) and (R >= 0) and (Q = 0) ->
(X = R + (Q * Y)) and (R >= 0) and (Q >= 0)

goal VC_3 :
forall X, Y, R, Q : int.

(X = R + (Q * Y)) and (R >= 0) and (Q >= 0) and not(Y <= R) ->
(X = Q * Y + R) and (0 <= R < Y) and (0 <= Q)

goal VC_4 :
forall X, Y, R, Q : int.

(X = R + (Q * Y)) and (R >= 0) and (Q >= 0) and (Y <= R) ->
(X = (R-Y) + ((Q+1) * Y)) and ((R-Y) >= 0) and (Q+1 >= 0)

Christophe Garion IN324 Software Validation – deductive methods 123/ 149

Outline of part 4 -
Aut. verification of imperative programs

10 Introduction on automated verification

11 Automated theorem proving

12 Generating verification conditions

13 Annotation language for C programs
Toolchain: Frama-C + WP + Alt-Ergo
ACSL presentation

Christophe Garion IN324 Software Validation – deductive methods 124/ 149

Outline of part 4 -
Aut. verification of imperative programs

10 Introduction on automated verification

11 Automated theorem proving

12 Generating verification conditions

13 Annotation language for C programs
Toolchain: Frama-C + WP + Alt-Ergo
ACSL presentation

Christophe Garion IN324 Software Validation – deductive methods 125/ 149

The global toolchain for C programs

C prog. lang.
+ ACSL

WP plugin
of Frama-C

Alt-Ergo

ACSL
The ANSI/ISO C Specification Lan-
guage (ACSL) is a behavorial specifica-
tion language for C, inspired of JML.

function contract
(pre/post-conditions)
formal language
granularity of assertions

Baudin, Patrick, Pascal Cuoq, et
al. (2014).
ACSL: ANSI/ISO C Specifica-
tion Language.
Version 1.8.
http : / / frama - c .
com / download / acsl -
implementation - Neon -
20140301.pdf.

http://frama-c.com/download/acsl-implementation-Neon-20140301.pdf
http://frama-c.com/download/acsl-implementation-Neon-20140301.pdf
http://frama-c.com/download/acsl-implementation-Neon-20140301.pdf
http://frama-c.com/download/acsl-implementation-Neon-20140301.pdf

The global toolchain for C programs

C prog. lang.
+ ACSL

WP plugin
of Frama-C

Alt-Ergo

Frama-C
Frama-C is a suite of tools developed
by CEA and INRIA dedicated to the
analysis of C programs.
Analysis is made statically.

Baudin, Patrick, Richard Boni-
chon, et al. (2013).
Frama-C.
http://frama-c.com.

http://frama-c.com

The global toolchain for C programs

C prog. lang.
+ ACSL

WP plugin
of Frama-C

Alt-Ergo

WP plugin
WP (for Weakest Precondition) is a VC
generator for C programs annotated
with ACSL.
It can be used with several provers (in-
teractive or not).

Baudin, Patrick, François Bobot,
et al. (2014).
WP Plug-in Manual.
http : / / www . frama - c . com /
download / wp - manual - Neon -
20140301.pdf.

http://www.frama-c.com/download/wp-manual-Neon-20140301.pdf
http://www.frama-c.com/download/wp-manual-Neon-20140301.pdf
http://www.frama-c.com/download/wp-manual-Neon-20140301.pdf

Tools configuration at ISAE SI

At ISAE SI, tools configuration is done with the following commands
(put them in your .bashrc):

shell

module load opam-softs
init-opam

Christophe Garion IN324 Software Validation – deductive methods 127/ 149

Using Frama-C and WP

Suppose we have the following C program:

max.c

int max(int i, int j) {
if (i < j) {

return j;
} else {

return i;
}

}

Invoking WP on the program is done by the following command:

shell
frama-c -wp max.c

Christophe Garion IN324 Software Validation – deductive methods 128/ 149

Using Frama-C and WP

Suppose we have the following C program:

max.c

int max(int i, int j) {
if (i < j) {

return j;
} else {

return i;
}

}

Invoking WP on the program with GUI is done by the following command:

shell
frama-c-gui -wp max.c

Try it on max.c (available in your repo).

Christophe Garion IN324 Software Validation – deductive methods 128/ 149

An annotated version of max…

basic-annotated-max.c

//@ ensures \result == (i < j ? j : i);
int max(int i, int j) {

if (i < j) {
return j;

} else {
return i;

}
}

Christophe Garion IN324 Software Validation – deductive methods 129/ 149

An (more) annotated version of max…

annotated-max.c

/*@ requires \valid(i) && \valid(j);
@ requires r == \null || \valid(r);
@ assigns *r;
@ behavior zero:
@ assumes r == \null;
@ assigns \nothing;
@ ensures \result == -1;
@ behavior normal:
@ assumes \valid(r);
@ assigns *r;
@ ensures *r == (*i < *j ? *j : *j);
@ ensures \result == 0;
@*/

int max(int *r, int* i, int* j) {
if (!r)

return -1;

if (*i < *j) {
*r = *j;
return 0;

}

*r = *i;
return 0;

}

What is and can be verified with WP

Default behavior or user-defined behavior
Verification of postcondition, frame condition, loop invariants and as-
sertions.

Safety verification
Verification of null-pointer dereferencing, buffer overflow, integer over-
flow…with special option.

Christophe Garion IN324 Software Validation – deductive methods 131/ 149

Some useful options

-wp-help: help ,

-wp-split: force splitting of conjunctions
-wp-fct f,g: select only f and g functions
-wp-print: pretty-print proof obligations
-wp-report: generate a report
-wp-timeout n: change provers timeout to n seconds
-wp-rte: enable RTE checking

Try them on annotated-max.c.

Christophe Garion IN324 Software Validation – deductive methods 132/ 149

Using Frama-C “for real”

If you want to completely develop an C application with Frama-C, use
the following advises:

verify that your C code is syntactically correct with gcc or clang
beware of /*@ comments blocks (you cannot separate @ from * even
with a space!)
to specify contracts for functions or loops (cf. further), use blocks
with /*@ and @*/ instead of several //@ annotations

Christophe Garion IN324 Software Validation – deductive methods 133/ 149

Outline of part 4 -
Aut. verification of imperative programs

10 Introduction on automated verification

11 Automated theorem proving

12 Generating verification conditions

13 Annotation language for C programs
Toolchain: Frama-C + WP + Alt-Ergo
ACSL presentation

Christophe Garion IN324 Software Validation – deductive methods 134/ 149

Where to write ACSL annotations?

Syntax (ACSL annotations)
ACSL annotations are written into special comments:
//@ ACSL annotation

/*@
@ ACSL annotation
@*/

Christophe Garion IN324 Software Validation – deductive methods 135/ 149

Mathematical and logical operators

Every classical C operator (addition, multiplication, operators on bits)
can be used in ACSL.
Some additional operations may be available: \min, \max, \abs, \exp,
\cos, \sqrt etc.

Syntax (logical operators)

&& and connector (∧)
|| or connector (∨)

==> implies connector (→)
<==> equivalence connector (↔)

\forall universal quantifier (∀)
\exists existential quantifier (∃)

Christophe Garion IN324 Software Validation – deductive methods 136/ 149

Typing

The language of logic expressions is typed. Types are either C types or
logic types.

Syntax (logic types)
Logic types are the following:

integer unbounded integers
real real numbers

boolean booleans (different from integers…)

Specification writers can also introduce logic types.

Christophe Garion IN324 Software Validation – deductive methods 137/ 149

Basic assertions .

You can ask WP to check simple assertions inside your program by using
the assert construct.

Syntax (assertion)
//@ assert logical_assertion;

Do not forget the “;” !

Write and verify some assertions in basics.c.

Christophe Garion IN324 Software Validation – deductive methods 138/ 149

Specifying contracts for functions

Syntax (built-in constructs)

\old(e) the value of e (predicate or exp.) in the
pre-state of the function

\result the returned value

Syntax (pre/post-conditions)

//@ requires P; P is a precondition of the function
//@ ensures Q; Q is a postcondition of the function

Christophe Garion IN324 Software Validation – deductive methods 139/ 149

Loop annotations

Syntax (loop invariant and variant)

//@ loop invariant P; P must hold before entering the
loop and at each loop iteration

//@ loop variant E; expression E is the variant of the
loop (classical meaning)

Christophe Garion IN324 Software Validation – deductive methods 140/ 149

Assign statements

assigns statement can (should!) be used to help provers. They precise
which parameters/local variables are modified during the execution of the
function/the loop.

Syntax (assign clause)

//@ assigns a; parameter a is assigned during the
execution of the function

//@ loop assigns a; variable a is assigned during the ex-
ecution of the loop

\nothing can be used with assigns clauses.

Christophe Garion IN324 Software Validation – deductive methods 141/ 149

Complete specification of a function

A complete specification of a function consists of (in this order):
(eventually) requires clauses
(eventually) assigns clauses
(eventually) ensures clauses

Notice that if you do not provide assigns clauses, WP will consider
assigns \everything by default.

You can also use behavior to define different behaviours (more readable
than big implications for instance).

Christophe Garion IN324 Software Validation – deductive methods 142/ 149

Exercise: prove factorial function .

Exercise
Prove the factorial function defined in fact.c. Beware, it is not written
as previously!

Christophe Garion IN324 Software Validation – deductive methods 143/ 149

Predicates

Users can define their own theories, for instance predicates.

Syntax (predicate)
//@ predicate predicate_name(par.) = definition

Example:

//@ predicate is_positive(integer x) = x > 0;

Christophe Garion IN324 Software Validation – deductive methods 144/ 149

Lemmas

Users can define lemmas and axioms in order to help ATP to establish
validity of specifications.

Syntax (lemma and axioms)
//@ lemma lemma_name: wff
//@ axiom axiom_name: wff

Example:

/*@ axiom div_mul_identity:
@ \forall real x, real y: y != 0.0 ==> y*(x/y) == x;
@*/

N.B.
Lemmas have to be proved…

Christophe Garion IN324 Software Validation – deductive methods 145/ 149

Hello, Euclid! .

Exercise
Specify and prove GCD algorithm:

first, define a theory for GCD in gcd.c

then, specify and prove gcd.c

Christophe Garion IN324 Software Validation – deductive methods 146/ 149

Working with pointers

If you want to work with pointers, you can use several build-in predicates.

Syntax (validity of a pointer)

\valid(p) pointer p is valid both for reading
and writing

\valid(p+(n..m)) memory regions from p+n to p+m
are valid both for reading and writ-
ing

Syntax (memory regions overlapping)

\separated(p, q) memory region pointed by p
and q are separated

\separated(p+(n..m), q+(i..j))

Christophe Garion IN324 Software Validation – deductive methods 147/ 149

Divide ut imperes .

Exercise
Specify and prove the euclidean algorithm defined in division_1.c
and division_2.c.

Christophe Garion IN324 Software Validation – deductive methods 148/ 149

Built-in construct \at
Specification writers need sometimes to refer to a value of an expression
at a particular state. The built-in construct \at can be used to refer to
such a value.

Syntax (\at)
\at(e,id) refers to the value of expression e at label id.

id can be a regular C label or a label added with a ghost statement or
one of the predefined labels:

Pre pre-state of the function
Here the state where the annotation appears
Old pre-state of the function (visible in ensures

clauses)
Post post-state of the function (visible in ensures

clauses)
LoopEntry state just before entering the loop
LoopCurrent state of the current iteration

	Introduction on formal methods
	Why formal methods?
	Programming languages semantics
	Some techniques
	Agenda

	Formal proof
	Formal systems
	Natural deduction for PL: NK
	Deductive system
	A new language: sequents for NK

	Natural deduction for FOL: NK
	First-order logic language
	Deductive system

	The Floyd-Hoare logic
	Imperative programs
	The Floyd-Hoare deductive system
	Rules for partial correctness
	Rule for total correctness

	Aut. verification of imperative programs
	Introduction on automated verification
	Automated theorem proving
	Generating verification conditions
	Annotation language for C programs
	Toolchain: Frama-C + WP + Alt-Ergo
	ACSL presentation

