IN324: Floyd-Hoare logic

Author : Christophe Garion <garion@isae.fr> Audience : IN Date :

1. Inductive definitions

- 1. give an inductive definitions of natural numbers
- 2. give an inductive definitions of binary trees

Prove the following property of binary trees: "the number *n* of nodes in a binary tree of height *h* is at least n = h and at most $n = 2^h - 1$ where *h* is the depth of the tree".

2. Natural deduction for propositional logic

Prove the following theorems using natural deduction for propositional logic:

(a) $(a \rightarrow (b \rightarrow c)) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow c))$

(b) $((a \lor b) \to c) \to (b \to c)$

(c) $((a \lor b) \land (a \to c) \land (b \to c)) \to c$

(d) $a \rightarrow \neg \neg a$

Let E be a set. Model the following mathematical notions using a first-order language. Define precisely the signature of your language.

- (a) = define the "classical" equality relation on E
- (b) \leq is a preorder on *E*
- (c) (E, .) is a monoid

4. Natural deduction for first-order logic

Prove the following theorems using natural deduction for first-order logic:

(a) $(\forall x \ \varphi \land \psi) \rightarrow (\forall x \ \varphi \land \forall x \ \psi)$

(b) $\exists x \forall y \ \varphi \rightarrow \forall y \exists x \ \varphi$

IN324

5. Floyd-Hoare logic to prove programs

For each of the following program:

- determine the invariant in order to prove the partial correctness of the program
- determine the variant in order to prove the total correctness of the program
- annotate the program using Floyd-Hoare logic
- (a) consider the function $\mathbb{N} \to \mathbb{N}$ defined by the following program:

$\{N > 0\}$	Invariant	Variant
K := 0;		
F := 1;		
while (K \neq N) do		
K := K + 1;		
F := F * K		
od		
$\{F = N!\}$		

$$\{N \ge 0\}$$

K := 0;

F := 1;

while (K \neq N) do

K := K + 1;

$$F := F * K$$

od

 ${F = N!}$

Invariant Variant $\{N \ge 0\}$ K := N;F := 1; while (K \neq 0) do F := F * K;K := K - 1 od $\{F = N!\}$ $\{N \ge 0\}$ K := N; F := 1; while (K \neq 0) do F := F * K;K := K - 1 od

 $\{F = N!\}$

$\{X \ge 0 \land Y > 0\}$	Invariant	Variant
Q := 0;		
R := X;		
while (Y \leq R) do		
Q := Q + 1;		
R := R - Y		
od		
$\{X = Q \times Y + R \land 0 \le Q \land 0 \le R < Y\}$		

 $\{X \ge 0 \land Y > 0\}$

Q := 0;

R := X;

while (Y \leq R) do

Q := Q + 1;

$$R := R - Y$$

od

$$\{X = Q \times Y + R \land 0 \le Q \land 0 \le R < Y\}$$

Variant

(d) consider the function $\mathbb{N}^2 \to \mathbb{N}^2$ defined by the following program:

 $\{A > 0 \land B > 0\}$ Invariant X := A; Y := B; while $(X \neq Y)$ do if (X > Y) then X := X - Y else Y := Y - X fi od $\{X = Y \land X > 0 \land X = gcd(A, B)\}$

where the *gcd* function is defined by:

$$\forall A \in \mathbb{N}^* \ gcd(A, A) = A$$

$$\forall A \in \mathbb{N}^* \forall B \in \mathbb{N}^* \ gcd(A, B) = gcd(B, A)$$

$$\forall A \in \mathbb{N}^* \forall B \in \mathbb{N}^* \ A > B \to gcd(A, B) = gcd(A - B, B)$$

 $\{A > 0 \land B > 0\}$

X := A;

Y := B;

while (X \neq Y) do

if (X > Y) then

$$X := X - Y$$

else

$$Y := Y - X$$

fi

od

 $\{X = Y \land X > 0 \land X = gcd(A, B)\}$