
Institut Supérieur de l’Aéronautique et de l’Espace

The C Programming Language

Jérôme Hugues

ISAE/DMIA – jerome.hugues@isae.fr

Jérôme Hugues C Language 1/ 152

jerome.hugues@isae.fr

License CC BY-NC-SA 3.0

This work is licensed under the Creative
Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported license (CC BY-NC-SA 3.0)

You are free to Share (copy, distribute and transmite) and to Remix
(adapt) this work under the following conditions:

Attribution – You must attribute the work in the manner
specified by the author or licensor (but not in any way that
suggests that they endorse you or your use of the work).

Noncommercial – You may not use this work for commer-
cial purposes.

Share Alike – If you alter, transform, or build upon this
work, you may distribute the resulting work only under the
same or similar license to this one.

See http://creativecommons.org/licenses/by-nc-sa/3.0/.

Jérôme Hugues C Language 2/ 152

http://creativecommons.org/licenses/by-nc-sa/3.0/

Objective

Review basic constructs of the C programming language:
typing system, control flow, functions prototyping;

Explore advances concepts: memory management and
pointers,

Highlight common pitfalls of the language;

Present specific patterns for embedded systems.

Jérôme Hugues C Language 3/ 152

References I

Darnell, P.A. and P.E. Margolis (1991).
C, a software engineering approach.
Springer books on professional computing.
Springer-Verlag.
ISBN: 9783540973898.
http://books.google.com/books?id=VptQAAAAMAAJ.

Kernighan, Brian W. and Dennis M. Ritchie (Mar. 1988).
C Programming Language (2nd Edition).
2nd ed.
Englewood Cliffs, NJ: Prentice Hall.
ISBN: 0131103628.
http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20\&path=ASIN/0131103628.

Jérôme Hugues C Language 4/ 152

http://books.google.com/books?id=VptQAAAAMAAJ
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0131103628
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0131103628

References II

Dowek, G. (2009).
Principles of programming languages.
Springer.
ISBN: 9781848820319.
http://books.google.com/books?id=1nfDlRj9aj0C.

WG14/N1124 (2005).
C Reference Manual ISO ISO/IEC 9899:TC2.
ISO/IEC.

You may also consult:
http://www.open-std.org/jtc1/sc22/wg14/,
http://en.wikibooks.org/wiki/C_Programming and
https://www.securecoding.cert.org

Jérôme Hugues C Language 5/ 152

http://books.google.com/books?id=1nfDlRj9aj0C
http://www.open-std.org/jtc1/sc22/wg14/
http://en.wikibooks.org/wiki/C_Programming
https://www.securecoding.cert.org

References III

All examples from these slides are available, contact the author for
more details.

Jérôme Hugues C Language 6/ 152

Outline

PART 1: Overview of the C Programming Language
PART 2: C Advanced topics
PART 3: C Library
PART 4: C toolchain
PART 5: C for embedded sytems
PART 6: Conclusion

Jérôme Hugues C Language 7/ 152

Part I

Overview of the C Programming
Language

Jérôme Hugues C Language 8/ 152

Outline

1 Why C ?

2 Basics of the C programming language

3 Predefined types

4 Operators

5 Control flow

Jérôme Hugues C Language 9/ 152

Outline

1 Why C ?
Background
Hello World!

2 Basics of the C programming language

3 Predefined types

4 Operators

5 Control flow

Jérôme Hugues C Language 10/ 152

A little bit of history

C originated from the Bell Labs, closely tied to the development of
the Unix operating system and the inability of existing language to
access to low-level features proposed by the processor.

C emerged as a widely used language for building operating
systems, and low-level programming.

Actually, C is both portable to several processor architectures,
while offering low-level constructs to manipulate the processor.
In some occasions, C is referred to as a “portable assembly”
language.

Jérôme Hugues C Language 11/ 152

A little bit of history (cont’d)

C is now standardised at ISO, by the working group
ISO/IEC JTC1/SC22/WG14, with various evolutions:

“K&R” C, as Kernighan and Richie, is the authors attempts to
define the structure and the semantics of the language in
1978;

ANSI C, is the standardized version of C, after joint work by
ANSI and ISO. This release is also known as C89;

C99 (1999) clarified some aspects related to types;

C11 (12/2011) is the latest release of the standard, and added
multi-tasking as key features.

In this lecture notes, we will focus on ANSI C, with some emphasis
on relevant elements of C99.

Jérôme Hugues C Language 12/ 152

C vs. C++

C++ emerged from early works from 1979 to extend C with the
concepts of object-oriented languages (classes, inheritance,
encapsulation, etc.).

C++ was first a superset of C with some extensions before
becoming an independent language, defined in a separated
standard. C++ took many elements from the C syntax, and
changed some like one line comments using ’//’.

Note: in some occasions, people mix the two languages. This can
cause many difficulties when building the full application.

Jérôme Hugues C Language 13/ 152

Hello World!

Hello World is the canonical C example, exhibiting all C basic
constructs

include (libraries), main entrypoint, return value

calling printf from stdlio.h

#inc lude<s td i o . h>

in t main (i n t argc , char ** argv) {
p r i n t f (" He l lo World ! \ n") ;

r e turn 0 ;
}

Jérôme Hugues C Language 14/ 152

Hello World!

Hello World is the canonical C example, exhibiting all C basic
constructs

include (libraries), main entrypoint, return value

calling printf from stdlio.h

#inc lude<s td i o . h>

in t main (i n t argc , char ** argv) {
p r i n t f (" He l lo World ! \ n") ;

r e turn 0 ;
}

Jérôme Hugues C Language 14/ 152

Hello World!

Hello World is the canonical C example, exhibiting all C basic
constructs

include (libraries), main entrypoint, return value

calling printf from stdlio.h

#inc lude<s td i o . h>

in t main (i n t argc , char ** argv) {
p r i n t f (" He l lo World ! \ n") ;

r e turn 0 ;
}

Jérôme Hugues C Language 14/ 152

Compiling Hello World!

In the following, we suppose the source code of the
“Hello World!” example is in file hello.c.
To compile it, we issue the following command1:

gcc -Wall -Werror -std=c99 -o hello hello.c

-o hello is the name of the program to create;

-std=c99 forces the use of the C99 rules;

-Wall -Werror enforces stricter syntactic rules.

neraka:c hugues$./hello
Hello World!

1Assuming a GNU compilation toolchain
Jérôme Hugues C Language 15/ 152

Some notes on C

C is a compiled language (as opposed to Python), without
virtual machine (like e.g. Java);

C comes with a specific compilation process for large systems,
relying on a preprocessor, external libraries and dependences
management;
C is case-sensitive (foo and Foo are different);

Comments start with “/*” and end with “*/”, or
start with “//” to the end of the line (C + + style);

C is weakly-typed, meaning it is easy to mix types without
explicit conversions.

Jérôme Hugues C Language 16/ 152

Outline

1 Why C ?

2 Basics of the C programming language
Elements of a C program
Structure of a C program

3 Predefined types

4 Operators

5 Control flow

Jérôme Hugues C Language 17/ 152

Anatomy of a C program

Every C program is made of

identifiers: named entities, e.g. variables, functions, types,
labels. They must be defined prior to their use;

keywords: reserved words defined by the standard, e.g. int,
const, default, . . .
constants

operators: +, ++, >>, . . .

punctuations

Note: comments are not seen by the C compiler, they are removed
by the preprocessor.

Jérôme Hugues C Language 18/ 152

Identifiers

Identifiers are used to name entities: variables, functions, types,
labels. They must be defined prior to their use;
An identifier is a set of characters made of

letters (upper and lower case, no accent, special characters,
etc.);

digits;

underscore (’ ’).

The first character cannot be a digit

Jérôme Hugues C Language 19/ 152

Keywords

Keywords are reserved by the language to convey particular
concepts:

memory: auto, register, static, extern, typedef;
types: char, double, enum, float, int, long, short, signed,
struct, union, unsigned, void;

type qualifiers: const, volatile;

control flow: break, case, continue, default, do, else, for,
goto, if, switch, while;

miscellaneous: return, sizeof.

Jérôme Hugues C Language 20/ 152

Expressions and instructions

An expression is a series of syntactically correct elements, that
evaluates to a types
e.g. x=0 or (i > 0) && (i <= 42). They can be concatenated
using “,”.
An instruction is an expression completed by a “;” or a block
delimited by “{“ and “}”.

i n t a , b , c ; /* i n t e g e r v a r i a b l e s */
b = 10 , c = 32 ;
a = b + c ;

i f (b != 0) {
a = c / b ;

}

Jérôme Hugues C Language 21/ 152

Definition of subprograms

Function implementations follow a regular pattern: function
declaration (e.g. a header file), declaration of local variables and
then instructions:

t y p e i d e n t i f i e r f u n c t i o n i d e n t i f i e r (p a r a m e t e r s) {
/∗ l o c a l v a r i a b l e s ∗/
/∗ i n s t r u c t i o n s ∗/

}

“type identifier” denotes the type returned by the function. If no
value is returned, then this identifier must be void.

Jérôme Hugues C Language 22/ 152

A simple subprogram

/* Return the minimum value o f two i n t e g e r s */
i n t min (i n t a , i n t b) {

i n t r e s u l t ;

i f (a <= b)
r e s u l t = a ;

e l s e
r e s u l t = b ;

re turn r e s u l t ;
}

Notes: In this example, we use blocks of only one expression, block
delimiters are optional.

Jérôme Hugues C Language 23/ 152

About the main function

The main function has a default signature, where

argc: denotes the number of parameters on the command line,
starting from 0;

argv: arrays of strings, one per argument;

return value: 0 if the program exits correctly (or use
EXIT_SUCCESS defined in stdlib.h)

/* Pr int the l i s t o f arguments from the command l i n e */
#inc lude<s td i o . h>
in t main (i n t argc , char ** argv) {

i n t i ;
f o r (i = 0 ; i < argc ; i++)

p r i n t f ("argument #%d : %s\n" , i , argv [i]) ;
r e turn 0 ;

}

Jérôme Hugues C Language 24/ 152

Outline

1 Why C ?

2 Basics of the C programming language

3 Predefined types

4 Operators

5 Control flow

Jérôme Hugues C Language 25/ 152

C predefined types

C is a weakly-typed language: one can mix homogeneous types.
i.e. a type defines both the size and the representation of a data in
memory.

C defines a set of predefined types, using one of the following
keywords:

character type: char;
integer types: int, short, long, unsigned;

floating point types: float, double

Jérôme Hugues C Language 26/ 152

char: character type

The char type denotes a 8-bits type used to represent ASCII
characters. char variables can be either signed (value in -128 ..
127) or unsigned (0 .. 255).

#inc lude<s td i o . h>
in t main (i n t argc , char ** argv) {

unsigned char c = ’A ’ ;
p r i n t f ("%d %c\n" , c , c) ; /* Pr in t s "65 A" */
return 0 ;

}

Note: maximum values of all types are defined in limits.h.
UCHAR_MAX and CHAR_MAX define the maximum values
for unsigned char and char.

Jérôme Hugues C Language 27/ 152

ASCII table

The memory representation of characters is a digit, hence there is
a correspondance between characters ’a’ and a integer. An ASCII
table provides one such representation, Unicode extends it to
non-latin languages.

32 | 0 48 | @ 64 | P 80 | ‘ 96 | p 112 |
! 33 | 1 49 | A 65 | Q 81 | a 97 | q 113 |
" 34 | 2 50 | B 66 | R 82 | b 98 | r 114 |
35 | 3 51 | C 67 | S 83 | c 99 | s 115 |
$ 36 | 4 52 | D 68 | T 84 | d 100 | t 116 |
% 37 | 5 53 | E 69 | U 85 | e 101 | u 117 |
& 38 | 6 54 | F 70 | V 86 | f 102 | v 118 |
’ 39 | 7 55 | G 71 | W 87 | g 103 | w 119 |
(40 | 8 56 | H 72 | X 88 | h 104 | x 120 |
) 41 | 9 57 | I 73 | Y 89 | i 105 | y 121 |

* 42 | : 58 | J 74 | Z 90 | j 106 | z 122 |
+ 43 | ; 59 | K 75 | [91 | k 107 | { 123 |
, 44 | < 60 | L 76 | \ 92 | l 108 | | 124 |
- 45 | = 61 | M 77 |] 93 | m 109 | } 125 |
. 46 | > 62 | N 78 | ^ 94 | n 110 | ~ 126 |
/ 47 | ? 63 | O 79 | _ 95 | o 111 |

Jérôme Hugues C Language 28/ 152

ASCII special characters

Characters code below 32 have special meaning, here is a small list:

0x0, NUL, Null character, string termination

0x7, BEL, Bell

0x8, BS, Backspace

0x9, HT, Horizontal Tab

0xA, LF, Line Feed

0xD, CR, Carriage Return

They are defined with particular characters in C:
\n new line \r carriage return \t horizontal tab
\f new page \v vertical tab \a bell

The ’\’ character is used to escape,
e.g. char backslash =’\”’ ;,
but also to represent characters in the form ’\x<hexa-code>’
e.g. char c =’\xFF’; or ’\<octal-code>’

Jérôme Hugues C Language 29/ 152

String constants

C does not have a native type for strings. Strings are nothing but
an array of characters, defined as follow:

char a_str ing [] = " He l lo World ! " ;

Note: as a consequence, there is no language defined attributes
for manipulating strings, one must use predefined functions, see
string.h for more details.

/* from s t r i n g . h */
char * s t r c a t (char * , const char *) ;
char * s t r c h r (const char * , i n t) ;
i n t strcmp (const char * , const char *) ;
i n t s t r c o l l (const char * , const char *) ;
char * s t r cpy (char * , const char *) ;
s i ze_t s t r l e n (const char *) ;

Jérôme Hugues C Language 30/ 152

Integer types

They are defined over the interval [−2n/2..2n/2 − 1], where n is the
size of the type in bits; it is a multiple of 8.
C defines integer types: char, int, and modifiers:

short int: smaller integer types;

long int and long long int: larger integer types;

unsigned [char|int]: shift range to 0..2n − 1

Per construction, the size in bytes (returned by the operator
sizeof) of all types respects:
char < short int ≤ int ≤ long int < long long int
See source/c/test_sizeof.c for more details.

Jérôme Hugues C Language 31/ 152

source/c/test_sizeof.c

Printing strings

C is a low-level language, there is a no support for manipulating
strings in the language. This is supported through dedicated
libraries.

stdio.h is a header file that defines functions for input/output.
printf is used to print a string.

printf (‘‘ control chain ’ ’ , exp1, exp2, ..);

where “control chain” is a string with special characters, exp-n the
set of expressions to print.

Jérôme Hugues C Language 32/ 152

Printing strings (cont’d)

Control chain uses special characters to insert data to print:

#inc lude<s td i o . h>

in t main (i n t argc , char ** argv) {
p r i n t f (" He l lo World ! \ n") ; /* \n to f l u s h the output */
p r i n t f ("Universe constant %d\n" , 4 2) ; /* p r i n t i n t e g e r */
p r i n t f ("Hexadecimal %x\n" , 4 2) ; /* p r i n t i n t e g e r */
re turn 0 ;

}

Jérôme Hugues C Language 33/ 152

Printing strings (cont’d)

format conversion data displayed

%d int signed decimal
%u unsigned int unsigned decimal
%o unsigned int unsigned octal
%x unsigned int unsigned hexadecimal
%f double floating point
%e double floating point, exp notation
%c unsigned char character
%s char* string
%p void* pointer

The prefix “l” must be used for long int or double.

Jérôme Hugues C Language 34/ 152

C99 Integer types

C99 introduces integer types whose size is clearly defined, in file
stdint.h

int8_t, int16_t, int32_t, int64_t: signed integers of size 8,
16, 32, 64 bits;

uint8_t, uint16_t, uint32_t, uint64_t:
unsigned integers of size 8, 16, 32, 64 bits;

size_t is the unsigned integer type of the result of the sizeof
operator (ISO C99 Section 7.17.)
The sizeof operator yields the size (in bytes) of its operand,
which may be an expression or the parenthesized name of a
type. The size is determined from the type of the operand.
The result is an integer. The value of the result is
implementation-defined, and its type (an unsigned integer
type) is size_t (ISO C99 Section 6.5.3.4.)

Jérôme Hugues C Language 35/ 152

C99 Boolean types

Standard C did not include the definition of a boolean type until
C99. Booleans are defined in stdbool.h.

#inc lude<stdboo l . h>

bool s t a tu s = true ;

Note: the canonical definition of ’false’ is an integer constant
whose value is 0, ’true’ is 1

Jérôme Hugues C Language 36/ 152

Floating point types

C defines three floating point types, they usually follow IEEE754
definition for floating types:

(−1)sign × c × bexponent

where c is coefficient, b is usually 2.

float: simple precision;

double: double precision;

long double: quadruple precision.

Jérôme Hugues C Language 37/ 152

Numerical constants

C allows the definition of numerical constants. Prefixes
and suffixes are used to enforce a particular base for computation,
and for defining precision:

i n t i n t e g e r = 123 ; /* i n t e g e r */
i n t o c t a l = 0123 ; /* o c t a l (base 8) */
i n t hexa = 0 xc00 f ee ; /* hexadecimal */
long a_long = 123456789L ; /* long i n t e g e r */
unsigned i n t u_int = 1234U; /* unsigned i n t e g e r */
unsigned long i n t u l i = 123456789UL; /* unsigned long i n t e g e r */
double a_double = 3 . 14159 ; /* a double */
f l o a t a_f loat = 3.14156F ; /* a f l o a t */
long double l_double = 3.14159L ; /* a long double */
/* The f o l l ow i n g i s a GNU gcc extens i on */
i n t binary = 0b1010 ; /* binary number */

Jérôme Hugues C Language 38/ 152

Outline

1 Why C ?

2 Basics of the C programming language

3 Predefined types

4 Operators

5 Control flow

Jérôme Hugues C Language 39/ 152

C operators

C is a weakly-typed language. The affectation operator ’=’ casts
(converts) the value to the type of the left hand-side part of the
expression.
Explicit cast can be enforced using “(type) expression”

#inc lude<s td i o . h>

in t main (i n t argc , char ** argv) {
i n t i , j = 2 ;
f l o a t x = 2 . 6 , y = 2 . 7 ;
i = x + y ; /* i = 5 */
j = (i n t) x + (i n t) y ; /* j = 4 */
x = i + 2 . 6 ; /* x = 7 .6 */
p r i n t f (" i = %d , j = %d , x = %f \n" , i , j , x) ;
r e turn 0 ;

}

Jérôme Hugues C Language 40/ 152

C operators (cont’d)

C uses typical symbols for operators: +, −, ∗, /.
The % sign is for modular division.
C has no operator for exponentiation. Similarly, typical
mathematical functions are not built-in.

#inc lude<math . h> /* mathematical f un c t i on s */
#inc lude<s td i o . h>

in t main (i n t argc , char ** argv) {
double s , s2 ;
s = s i n (M_PI / 4) ;
s2 = sq r t (2 . 0) / 2 . 0 ;
p r i n t f ("%f %f \n" , s , s2) ;
r e turn 0 ;

}

Jérôme Hugues C Language 41/ 152

C operators and type conversion

Warning: C uses the same / operator for integer and float
division. The type of the operands has an impact on the precision
of the result:

#inc lude<s td i o . h>

in t main (i n t argc , char ** argv) {
f l o a t x , x2 ;
x = 3 / 2 ; /* x = 1 .0 */
x2 = 3 / 2 . 0 ; /* x = 1 .5 */
p r i n t f ("%f %f \n" , x , x2) ;
r e turn 0 ;

}

Jérôme Hugues C Language 42/ 152

Type promotion

When performing computations, integer types smaller than int are
implicitely converted to this type, otherwise to unsigned int

#inc lude <s td i o . h>

in t main (i n t argc , char ** argv) {
s igned char c r e su l t , c1 , c2 , c3 ;
c1 = 100 ; c2 = 3 ; c3 = 4 ;
c r e s u l t = c1 * c2 / c3 ;
p r i n t f ("%d\n" , c r e s u l t) ; /* r e tu rn s 75 */
c1 = 100 ; c2 = 3 ; c3 = 4 ;
c r e s u l t = c1 * c2 ;
c r e s u l t /= c3 ;
p r i n t f ("%d\n" , c r e s u l t) ; /* r e tu rn s 11 */
re turn 0 ;

}

Jérôme Hugues C Language 43/ 152

Integer Conversion Rank

No two different signed integer types have the same rank, even if they have the
same representation.

The rank of a signed integer type is greater than the rank of any signed integer
type with less precision.

The rank of long long int is greater than the rank of long int, which is greater
than the rank of int, which is greater than the rank of short int, which is greater
than the rank of signed char.

The rank of any unsigned integer type is equal to the rank of the corresponding
signed integer type, if any.

The rank of any standard integer type is greater than the rank of any extended
integer type with the same width.

The rank of char is equal to the rank of signed char and unsigned char.

The rank of any extended signed integer type relative to another extended
signed integer type with the same precision is implementation defined but still
subject to the other rules for determining the integer conversion rank.

For all integer types T1, T2, and T3, if T1 has greater rank than T2, and T2
has greater rank than T3, then T1 has greater rank than T3.

Jérôme Hugues C Language 44/ 152

Rules for type promotion

1 If both operands have the same type, no further conversion is needed.

2 If both operands are of the same integer type (signed or unsigned), the operand
with the type of lesser integer conversion rank is converted to the type of the
operand with greater rank.

3 If the operand that has unsigned integer type has rank greater than or equal to
the rank of the type of the other operand, the operand with signed integer type
is converted to the type of the operand with unsigned integer type.

4 If the type of the operand with signed integer type can represent all of the
values of the type of the operand with unsigned integer type, the operand with
unsigned integer type is converted to the type of the operand with signed
integer type.

5 Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type. Specific
operations can add to or modify the semantics of the usual arithmetic
operations.

Jérôme Hugues C Language 45/ 152

Type promotion example

“Rules for type promotion are not logical, there are the rules,
period.” (from Internet).

#inc lude <s td i o . h>
in t main (i n t argc , char ** argv) {

i n t s i = -1 ;
unsigned i n t u i = 1 ;
p r i n t f ("%d\n" , s i < ui) ;
p r i n t f ("%d\n" , s i < (i n t) u i) ;
r e turn 0 ;

}

Exercise: explain the result displayed.

Jérôme Hugues C Language 46/ 152

C relational and binary operators

Relational operators: >, >=, <, <=, ==, ! =
Warning: A typical error is to mix “=” (affectation)
and “==” (test).
Logic operators: && (logic AND), || (logic OR), ! (negation)
Note: the default value for true is 1, false is 0.
int x = (i >= 0) && (i <= 9) && !(i == 5);

Jérôme Hugues C Language 47/ 152

Other operators

C defines short operators: ++,−−

a++; is equivalent to a = a + 1;

These operators can be used as suffix or prefix
a=1, c = ++a; is equivalent to a++, c = a;
a=1, c = a++; is equivalent to c = a, a++;

+ =,− =, ∗ =, / =,% =

a ∗ = 10; is equivalent to a = a ∗ 10;

Jérôme Hugues C Language 48/ 152

Ternary operator

The ternary operator can be used for one-liner expression
evaluation:

unsigned char bit = (x % 2 == 0) ? ’0’ : ’1’ ;

which reads: “if x modulo 2 equals to 0, then return the character
’0’, else returns ’1’.”

Note: this notation is compact, and should be used for simple
expression evaluation only, e.g. computing a min
or max value.

Jérôme Hugues C Language 49/ 152

Outline

1 Why C ?

2 Basics of the C programming language

3 Predefined types

4 Operators

5 Control flow

Jérôme Hugues C Language 50/ 152

Control flow instructions

C proposes control flow instructions similar to those from Java:

conditional branching: if else,

multiple branching: switch case,

loops: while, do/while, for,
unconditional branching: break, continue, goto

Jérôme Hugues C Language 51/ 152

Conditional branching: if else

The generic form of an if/else instruction is

if (expression-1)
instruction-1

else if (expression-2)
instruction-2

/* .. */
else
instruction-n

/* shorter variant */
if (expression-1)
instruction-1

where “expression-k” is a boolean expression, and “instruction-k”
one instruction, or a block.

Jérôme Hugues C Language 52/ 152

Multiple branching: switch case

The generic form of a switch/case instruction is

switch (expr) {
case constant-1: /* if expression == constant-1 */
instruction-1
break; /* mandatory, else executes

the following block */
case constant-2:
instruction-2
break;

default:
/* executed if expr does not match any constant */
instruction-n
break;

}

Jérôme Hugues C Language 53/ 152

while and do/while loops

while and do/while loops differs in semantics:

while (expression)
instruction

is executed as long as expression in true. It may not be executed at
all, whereas

do
instruction

while (expression)

is always executed at least once.

Jérôme Hugues C Language 54/ 152

for loops

A for loop has the following form

for (expr 1 ; expr 2 ; expr 3)
instruction

it is equivalent to

expr1;
while (expr2) {
instruction;
expr3;

}

Jérôme Hugues C Language 55/ 152

Example

/* S ieve Of Eratosthenes : f i nd prime numbers l e s s than SIZE */

#inc lude <s td i o . h>

#de f i n e SIZE 100
s t a t i c i n t s i e v e [SIZE] ; /* By de fau l t , array i n i t i a l i z e d to 0 */

void e ra to s th ene s (void) {
i n t i , j ;
f o r (i =2; i * i <= SIZE ; i++)

i f (! s i e v e [i]) /* i - th entry i s a prime number */
f o r (j = i+i ; j < SIZE ; j += i)

s i e v e [j] = 1 ; /* non - prime are mu l t ip l e o f i */
}

i n t main (i n t argc , char ** argv) {
i n t i ;

e r a t o s thene s () ;
f o r (i =2; i< SIZE ; i++)

i f (! s i e v e [i])
p r i n t f ("%d " , i) ;

p r i n t f ("\n") ;
r e turn 0 ;

}

Jérôme Hugues C Language 56/ 152

Unconditional branching: break, continue, goto

These instructions are used to control the execution of loops:

break: stop the execution of the inner loop;

continue: stop the execution of the current step in a loop,
and execute the next iteration;

goto: jump to a particular label in source code. Usually
forbidden by coding guidelines.

Jérôme Hugues C Language 57/ 152

Part II

C Advanced topics

Jérôme Hugues C Language 58/ 152

Outline

6 Why engineering?

7 User-defined types

8 Pointers and memory management

9 User-defined functions

Jérôme Hugues C Language 59/ 152

Outline

6 Why engineering?

7 User-defined types

8 Pointers and memory management

9 User-defined functions

Jérôme Hugues C Language 60/ 152

A digression: coding versus engineering

“Coding is the process of transforming the comprehensible into the
incomprehensible, and is relevant only where machines are
programmed in less abstract (or less meaningful) terms [..]” from
“The Word ’Coding’ Considered Harmful” by Brian Tooby.
Coding is often used for software-related activities, it should not be
considered this way: large systems relies on software to achieve
their mission. Hence, engineering it correctly is important. This
means

select proper style guidelines: naming conventions;

design the architecture: types hierarchy, libraries;

testing strategies, . . .

Jérôme Hugues C Language 61/ 152

Style guidelines

We spend 90% of the time reading source code. Style guidelines
are important to ease reading and navigation:

1 one instruction per line, ’;’ being the last character;

2 the layout of the program should be obvious, braces should be
alone on a line, or the last character on a line;

3 use text editors features to indent source;

4 there should be a whitespace character between keywords, and
the following ’(’, and binary operators;

5 there is no whitespace between a unary operator and the
operand.

Jérôme Hugues C Language 62/ 152

Code quality

“Quality and Assessment” of code is an important aspect of the
software engineering cycle. Quality stems from

proper type and function definitions, well isolated in modules;

proper documentation to remove ambiguity in function
semantics;

proper testing of all artifacts.

All these elements are detailed in depth in standards for building
critical systems like DO-178B (avionics), ECSS-E-40-B (space), . . .

Example of C coding guidelines from NASA’s JPL:
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf

Jérôme Hugues C Language 63/ 152

http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf

Outline

6 Why engineering?

7 User-defined types

8 Pointers and memory management

9 User-defined functions

Jérôme Hugues C Language 64/ 152

User-defined types

From basic types (integer, float and character), one can build more
complex types. Usually, these are defined to match a particular
problem space. C proposes:

static arrays2;

structures: aggregates of types;

enumerations: lists of tags;

union: multiple views on the same area of memory.

In addition, the user can name its types.

2dynamic arrays are discussed with pointers
Jérôme Hugues C Language 65/ 152

Static arrays

The general form for declaring static arrays is
type id[const_size]
where type is the type of an elements, id the name of the type and
const_size a constant integer denoting the number of elements in
the array.
By convention, elements indexes are 0..const size − 1.

void f (void) {
i n t i ;
unsigned char tab [1 0] ; /* tab i s an array o f s i z e 10 */

f o r (i = 0 ; i < 10 ; i++) /* i n d i c e s are 0 to 9 */
tab [i] = i ; /* a f f e c t i n g va lue s to tab */

}

Jérôme Hugues C Language 66/ 152

Static arrays (cont’d)

Note: Using [] for manipulating arrays is a handy notation. But in
C, they do not define a type.

int tab [10]; simply allocates storage space to store 10
integers. tab is an identifier to refer to this area.

the = or == operators do not operate on the content of tab,
but to the address of this storage space.

Note: specific routines for copying or comparing arrays must be
used, like memcpy(), memcmp().

Jérôme Hugues C Language 67/ 152

Structures

The definition of structures is simple:

#inc lude<math . h>

s t r u c t po int { /* d e f i n i t i o n o f a s t r u c t : */
double x , y ; /* two doubles : x , y */

} ;

s t r u c t po int o r i g i n = { 0 . , 0 . } ; /* a va r i ab l e */

double norm (s t r u c t po int p) {
re turn (sq r t (p . x * p . x + p . y * p . y)) ; /* manipulat ion */

}

Jérôme Hugues C Language 68/ 152

Enumerations

An enumeration is a type defined by an ordered list of literals:

#inc lude<s td i o . h>

enum days { sun , mon , tue , wed , thur , f r i , s a t } ;

i n t main (i n t argc , char ** argv) {
enum days a_day = sun ;
p r i n t f ("%d\n" , a_day) ; /* p r i n t s "0" */
re turn 0 ;

}

Per construction, a literal is mapped to an integer.
By default, the first value is 0, successor is 1, etc.

Jérôme Hugues C Language 69/ 152

Unions

A union is a set of variables all set at the same memory position.
Each element of the union is a distinct view on the same address:

#inc lude<s td i o . h>

union foo { i n t a ; f l o a t b ; } ;

i n t main (i n t argc , char ** argv) {
union foo bar ;
bar . b = 42 . 0 ;
p r i n t f ("%d %f \n" , bar . a , bar . b) ;
/* p r i n t s "1109917696 42.000000" */
re turn 0 ;

}

Jérôme Hugues C Language 70/ 152

typedef: naming a type

To ease writing of program, one can use typedef to define an alias
to a type, like:

s t r u c t _point { f l o a t x , y ; } ;

typede f s t r u c t _point po int ;

po int a_point = { 0 . 5 , 1 . 0 } ;

i n t main (i n t argc , char ** argv) {
a_point . x = 3 . 1 4 ;

r e turn 0 ;
}

Jérôme Hugues C Language 71/ 152

Outline

6 Why engineering?

7 User-defined types

8 Pointers and memory management

9 User-defined functions

Jérôme Hugues C Language 72/ 152

Object value and address

In C, an entity is defined by its address and its value.

the & operator returns the address of a variable,

<type> *<id>; defines a pointer variable. A variable whose
content is the address of another variable of type <type>,

the * operator returns the content pointed by a pointer
variable.

Manipulating pointers is useful for accessing memory area through
aliases. They are mandatory for many C idiomatic constructs:
arrays, parameter passing (structs, out mode), and pointers to
functions.

Jérôme Hugues C Language 73/ 152

Manipulating object and pointers

#inc lude<s td i o . h>

in t main (i n t argc , char ** argv) {
i n t i = 42 , *p ;
p = &i ;
p r i n t f (" i : %d %p\n" , i , &i) ;
p r i n t f ("p : %p %p\n" , p , &p) ;
p r i n t f ("*p : %p %d\n" , p , *p) ;
/* p r i n t f (on a 64 b i t machine)

i : 42 0 x 7 f f f 5 f b f f 8 e c
p : 0 x 7 f f f 5 f b f f 8 e c 0 x 7 f f f 5 f b f f 8 e 0
*p : 0 x 7 f f f 5 f b f f 8 e c 42 */

re turn 0 ;
}

Jérôme Hugues C Language 74/ 152

Memory allocation

Memory is divided into different segments depending on their
usage:

Variables local to a subprogram are allocated on the stack.
This memory is reclaimed when exiting the subprogram.

Global variables are allocated on the data segment.

To handle requirements for dynamicity in memory usage (e.g.
creation/destruction of requests), one will allocate memory in
the heap.

Jérôme Hugues C Language 75/ 152

malloc() and free()

C has no automatic memory management capabilities.

malloc() allocates a chunk of memory;

free() releases this part.

#inc lude <s t d l i b . h> /* f o r mal loc () */
#inc lude <s td i o . h>
in t main (i n t argc , char ** argv) {

i n t *memory = mal loc (100 * s i z e o f (i n t)) ; /* a l l o c a t e
*/

p r i n t f ("Memory a l l o c a t e d at %p\n" , memory) ;
f r e e (memory) ; /* f r e e a l l o c a t e d memory

*/
re turn 0 ;

}

Warning: be careful not to introduce memory leaks.

Jérôme Hugues C Language 76/ 152

About free()

free(p) deallocates the memory pointed by *p but does not change
the value of p. A good practice is to always set the value of p to
NULL:

f r e e (p) ;
p = NULL ;

#d e f i n e FREE(x) f r e e (x) ; x = NULL

See funny videos: Pointer fun with Binky at Stanford:
http://cslibrary.stanford.edu/104/

Jérôme Hugues C Language 77/ 152

http://cslibrary.stanford.edu/104/

Pointers arithmetics

A pointer is the address of a variable in memory. It is represented
as an integer (or long integer depending on the CPU).
Pointers support arithmetics operations.
Let p be a pointer to type, i an integer:

the address of p= p + i; is
p + i * sizeof(type),
operators -, ++, –, == are also defined,

the NULL macro defines an invalid pointer. This is the
default value of all pointers.

Jérôme Hugues C Language 78/ 152

Arrays and pointers

In C, arrays are just a syntactic convention. An array is a memory
area storing n items of the same type, it is therefore equivalent to
a constant pointer whose value is the first element of the array.

Hence, p[i] = ∗(p+i);

Allocating a dynamic array is equivalent to allocating the
corresponding chunk of memory using malloc():

int ∗tab = (int ∗) malloc (n ∗ sizeof (int));

Jérôme Hugues C Language 79/ 152

Multi-dimension arrays

Arrays of dimension 2 or more follow the same logic: the array is
split as an array of arrays, like in the following

#inc lude<s t d l i b . h>
in t main (i n t argc , char ** argv) {

i n t i , ** array ;

array = (i n t **) mal loc (10 * s i z e o f (i n t *)) ;
f o r (i = 0 ; i < 10 ; i++)

array [i] = (i n t *) mal loc (10 * s i z e o f (i n t)) ;

f o r (i = 0 ; i < 10 ; i++)
f r e e (array [i]) ;

f r e e (array) ;

r e turn 0 ;
}

Jérôme Hugues C Language 80/ 152

Strings and pointers

A string is an array of characters, hence a pointer. The ANSI/C
convention for strings is that a string is an array terminated by the
character ’\0’ (NUL).

#inc lude <s td i o . h>

in t main (i n t argc , char ** argv) {
i n t i ;
char * s t r i n g = " He l lo World ! " ;

f o r (i = 0 ; * s t r i n g != ’ \0 ’ ; i++)
s t r i n g++;

p r i n t f ("%s has %d cha ra c t e r s \n" , s t r i n g - i , i) ;
r e turn 0 ;

}

Jérôme Hugues C Language 81/ 152

Miscellaneous and pointers

Some final words about pointers:

Structures: Let p be a pointer on a structure, then
dereferencing one member is (∗p).member = p−>member;

Recursive types, like linked lists are built this way:

s t r u c t c e l l
{

i n t va lue ;
s t r u c t c e l l * next ;

} ;

typede f s t r u c t c e l l * l i s t ;

Jérôme Hugues C Language 82/ 152

Duff’s device

The Duff’s device is a scary C program, made of several
optimizations and freedom from the language.
The “device” came from an optimization problem of a copy loop,
basically

void copy (char *to , char *from , i n t count) {
do { /* count > 0 assumed */

* to++ = *from++;
} whi l e (- - count > 0) ;

}

Jérôme Hugues C Language 83/ 152

Duff’s device (cont’d)

Question: Why does the following work?

void duf f_device (char *to , char *from , i n t count) {
i n t n = (count + 7) / 8 ;
switch (count % 8){

case 0 : do{ * to++ = *from++;
case 7 : * to++ = *from++;
case 6 : * to++ = *from++;
case 5 : * to++ = *from++;
case 4 : * to++ = *from++;
case 3 : * to++ = *from++;
case 2 : * to++ = *from++;
case 1 : * to++ = *from++;
} whi l e (- - n > 0) ;

}
}

Jérôme Hugues C Language 84/ 152

Outline

6 Why engineering?

7 User-defined types

8 Pointers and memory management

9 User-defined functions

Jérôme Hugues C Language 85/ 152

Definition of subprograms

Function implementations follow a regular pattern: function
declaration (e.g. a header file), declaration of local variables and
then instructions:

t y p e i d e n t i f i e r f u n c t i o n i d e n t i f i e r (params) {
/∗ l o c a l v a r i a b l e s ∗/
/∗ i n s t r u c t i o n s ∗/

}

“type identifier” denotes the type returned by the function. If no
value is returned, then this identifier must be void.

Jérôme Hugues C Language 86/ 152

A simple subprogram

/* Return the minimum value o f two i n t e g e r s */
i n t min (i n t a , i n t b) {

i n t r e s u l t ;

i f (a <= b)
r e s u l t = a ;

e l s e
r e s u l t = b ;

re turn r e s u l t ;
}

Notes: In this example, we use blocks of only one expression, block
delimiters are optional.

Jérôme Hugues C Language 87/ 152

Rules about subprograms

Subprogram (and types) must be defined prior to being used.
The definition of a subprogram (prototype) is similar to its
implementation:

t y p e i d e n t i f i e r f u n c t i o n i d e n t i f i e r (p a r a m e t e r s) ;

If the implementation comes before its use, the prototype is not
mandatory.
Warning: some (old) compilers may not warn if the prototype is
not defined, and will use default parameter promotion: integers
arguments are cast to int, all floating types are cast to double.

Jérôme Hugues C Language 88/ 152

Parameter passing in C

In C, parameters are passed by by-copy, they are pushed on the
stack by the caller, and popped by the callee.
By-reference semantics is achieved using pointers:

#inc lude<s td i o . h>
void swap (i n t *a , i n t *b)
{

i n t temp ;
temp = *a ; *a = *b ; *b = temp ;

}
i n t main (i n t argc , char ** argv)
{

i n t a = 42 , b = 51 ;
swap (&a , &b) ;
p r i n t f ("%d %d\n" , a , b) ;

}

Jérôme Hugues C Language 89/ 152

Pointers to functions

Pointers can also point to functions, that is the address of its
implementation in memory.
Pointers to functions are useful to defer binding to a particular
processing,

i n t h e a p s o r t
(void ∗ base , s i z e t ne l , s i z e t width ,

i n t (∗ compar) (const void ∗ , const void ∗)) ;

compar is a pointer to a comparison function used in the
heapsort() function.

Jérôme Hugues C Language 90/ 152

Variadic functions

Functions with multiple parameters (like printf can be defined this
way:

#inc lude <s td i o . h>
#inc lude <stdarg . h>
in t add (i n t nb , . . .) {

i n t r e s = 0 , i ; va_l i s t parameters ;
va_start (parameters , nb) ;
f o r (i = 0 ; i < nb ; i++)

r e s += va_arg (parameters , i n t) ;
va_end(parameters) ;
r e turn (r e s) ;

}
i n t main (i n t argc , char ** argv) {

p r i n t f ("%d \n" , add (4 , 1 0 , 2 , 8 , 5)) ;
r e turn 0 ;

}

Jérôme Hugues C Language 91/ 152

About the main function

The main function has a default signature, where

argc: denotes the number of parameters on the command line,
starting from 0;

argv: arrays of strings, one per argument;

return value: 0 if the program exits correctly (or use
EXIT_SUCCESS defined in stdlib.h

/* Pr int the l i s t o f arguments from the command l i n e */
#inc lude<s td i o . h>
in t main (i n t argc , char ** argv) {

i n t i ;
f o r (i = 0 ; i < argc ; i++)

p r i n t f ("argument #%d : %s\n" , i , argv [i]) ;
r e turn 0 ;

}

Jérôme Hugues C Language 92/ 152

Part III

C Library

Jérôme Hugues C Language 93/ 152

Outline

10 C libraries

Jérôme Hugues C Language 94/ 152

Outline

10 C libraries
Standard C library
Math library
Other libraries

Jérôme Hugues C Language 95/ 152

About C libraries

Libraries have been defined as a handy way to

package a set of functions as a collection of object and header
files, ready to be used, e.g. basic C functions;

hide implementation code while providing particular functions:
e.g. Windows DLL

Jérôme Hugues C Language 96/ 152

Getting help

The installation of a C toolchain on a Unix system follows
canonical rules:

/usr/include stores standard header files;

the man utility returns a formatted help on a function

man -k <function> to look for a function
man [-s <section>] <function> to look for its description.

Jérôme Hugues C Language 97/ 152

Text I/O

printf(), scanf() are used to print or parse strings, following
particular formatting conventions for formatting:

#inc lude<s td i o . h>

in t main (i n t argc , char ** argv) {
i n t age ;
p r i n t f ("Type your age\n") ; /* \n to f l u s h the output */
s can f ("%d" , &age) ; /* read from the s td in */
p r i n t f ("you typed : %d\n" , age) ;
r e turn 0 ;

}

See also: puts(), getc(), getchar().
Note: scanf() can be unsafe if used for scanning strings.

Jérôme Hugues C Language 98/ 152

File and buffered I/O

Variants of printf(), scanf() exist for

Buffers: sprintf(), sscanf(): operate on a allocated buffer.

Fixed-size buffers: snprintf(), snscanf(): operate on a
fixed-size allocated buffer.

Files: fprintf(), fscanf() They operate on opened files for
reading, printing.

Jérôme Hugues C Language 99/ 152

File management

fopen(), fclose() provide basic file management.

#inc lude<s td i o . h>

in t main (i n t argc , char ** argv) {
FILE * f ;
f = fopen (" t e s t . out" , "w") ;
/* "w" i n d i c a t e s mode , here wr i t e */
f p r i n t f (f , " He l lo World ! \ n") ;
f c l o s e (f) ;
r e turn 0 ;

}

Note: all OS services like chown, chmod, etc are also available.

Jérôme Hugues C Language 100/ 152

Checking assertions at run-time

Assertions are expressions evaluated at runtime, in case debug
options are activated.

#inc lude<s t d l i b . h>
#inc lude<a s s e r t . h>

in t main (i n t argc , char ** argv) {
i n t * ptr = mal loc (s i z e o f (i n t) * 1 0) ;
a s s e r t (ptr != NULL) ; /* a s s e r t ptr i s c o r r e c t l y s e t */

re turn 0 ;
}

Note: useful for validating pre/post conditions on source code,
based on a detailed specification of the function

Jérôme Hugues C Language 101/ 152

String Handling

Strings are not first class citizen of the C language. Dedicated
functions implement basic manipulations:

strcat() concatenate two strings

strchr() string scanning operation

strcmp() compare two strings

strcpy() copy a string

strlen() get string length

strncat() concatenate one string with part of another

strncmp() compare parts of two strings

strncpy() copy part of a string

strrchr() string scanning operation

Jérôme Hugues C Language 102/ 152

Time management

time.h defines a set of functions for manipulating time, performing
arithmetics and printing:

#inc lude <s td i o . h>
#inc lude <time . h>

in t main (void)
{

time_t t imer = time (NULL) ;
p r i n t f ("Time o f the day %s\n" , ctime(&timer)) ;
r e turn 0 ;

}

Jérôme Hugues C Language 103/ 152

Math library

math.h defines a full list of mathematical operators. One should
carefully check precision of arguments, conventions used, . . .

E.g. round(), lround (), llround (), sin ()

Note: in some environments, performing floating point operations
require a specific math library and/or hardware support.

Jérôme Hugues C Language 104/ 152

Other libraries

Other libraries may be defined, e.g. to encapsulate specific
concerns, some of which being standardised:

libpthread: POSIX concurrency;

libncurses: text-based GUI;

libcrypto: cryptography;

libraries for GUI, database, network, . . .

On a Unix-based systems, libraries are installed in /usr/lib, header
files in /usr/include.

Jérôme Hugues C Language 105/ 152

Part IV

C toolchain

Jérôme Hugues C Language 106/ 152

Outline

11 Anatomy of a C toolchain

12 The preprocessor

13 Building large C programs

14 Debugging a C Program

Jérôme Hugues C Language 107/ 152

Outline

11 Anatomy of a C toolchain

12 The preprocessor

13 Building large C programs

14 Debugging a C Program

Jérôme Hugues C Language 108/ 152

Steps in compiling a C program

Compiling a C program means turning a set of text files into an
executable. This is a multi-steps process made of:

1 Preprocessing of file: executing statements associates to
#include, #ifdef, etc.;

2 Compilation of each file: building an object file for each
compilation unit;

3 Linking phase: combining object files + prologue to build the
binary.

Following Unix philosophy, each step is supported by a dedicated
tool.

Jérôme Hugues C Language 109/ 152

About the GCC toolchain

The GNU Compiler Collection (aka. gcc) is a set of front-ends
(supporting C, C++, Ada, Java, Fortran, ...) and back-ends
(producing code for various processors).
It is part of the open source movement initiated by the Free
Software Foundation.
It is the default compiler on all Linux platforms, and used on many
others. It is also used for many embedded RTOS like RTEMS or
VxWorks.

Jérôme Hugues C Language 110/ 152

Compiling Hello World!

In the following, we suppose the source code of the
“Hello World!” example is in file hello.c.
To compile it, we issue the following command:

gcc -Wall -Werror -std=c99 -o hello hello.c

-o hello is the name of the program to create;

-std=c99 forces the use of the C99 rules;

-Wall -Werror enforces stricter syntactic rules.

neraka-2:c hugues$./hello
Hello World!

Jérôme Hugues C Language 111/ 152

Getting help

The installation of a C toolchain on a Unix system follows
canonical rules:

/usr/include stores standard header files;

the man utility returns a formatted help on a function

man -k <function> to look for a function
man [-s <section>] <function> to look for its description.

Jérôme Hugues C Language 112/ 152

Outline

11 Anatomy of a C toolchain

12 The preprocessor

13 Building large C programs

14 Debugging a C Program

Jérôme Hugues C Language 113/ 152

Programming in the large

“Programming in the large” refers to defining and implementing
large software-based systems made by a team. It involves splitting
a system into modules with well-defined interfaces and boundaries.
In the case of C, this implies splitting code base into a set of
compilation units made of:

One implementation file (e.g. hello.c) that implements a set
of functions;

A set of header files (e.g. stdio.h) that defines functions,
types, etc.

Jérôme Hugues C Language 114/ 152

Programming in the large (cont’d)

One and only one of them shall define the main() function.
All these compilation units are compiled as object files, then linked
together to form the final program
Compilation units allow for separate compilation. If one unit is
changed, re-building the whole program is reduced to recompiling
only the unit that changed.
This provided a significant speed-up in the early days of
programming.
Dependency tracking is usually done through a makefile.

Jérôme Hugues C Language 115/ 152

About the preprocessor

The role of the preprocessor is to prepare the source files to be
compiled.
Directives are used to insert or remove source code.
All directive are prefixed by #, like #include

#include insert the content of a file, e.g. a header file;

#define to define a string constant;

#ifdef/#ifndef, #else, #endif for conditional compilation.

Jérôme Hugues C Language 116/ 152

Preprocessor example

/* Def ine boo leans */
#i f n d e f __BOOL_H_
#de f i n e __BOOL_H_
#i f __STDC_VERSION__ >= 199901L
/* We are us ing a C99 compi ler , nothing to do */
inc lude<stdboo l . h>
#e l s e
de f i n e bool unsigned char ;
de f i n e f a l s e (bool)0
de f i n e t rue (bool)1
#end i f /* __STDC_VERSION__ */
#end i f /* __BOOL_H_ */

The use of #ifndef is mandatory to ensure that at most one copy
of the header file is embedded.

Jérôme Hugues C Language 117/ 152

About #define

The macro #define is used to define a token that will be
substituted in the source code; for instance the constant size of an
array, like
#define SIZE 10
Note there is no ’;’ at the end, as the token (SIZE) will be
changed to 10.
Another usage of this macro is for one-liner functions:
#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))

Jérôme Hugues C Language 118/ 152

Outline

11 Anatomy of a C toolchain

12 The preprocessor

13 Building large C programs

14 Debugging a C Program

Jérôme Hugues C Language 119/ 152

Compiling large C code

The compilation of a program, made of several .c files
(or compilation units) is a multi-step process:

Compile each .c file to build an object file:

$ gcc -Wall -Werror -std=c99 -c file1.c
$ gcc -Wall -Werror -std=c99 -c file2.c
Link all object files together:

$ gcc -o prog file1.o file2.o

If only one unit changed, one can reduce re-compilation time. Yet,
performing these steps is error-prone, and can be automated using
a Makefile.

Jérôme Hugues C Language 120/ 152

Makefile

A makefile defines the set of steps to build files, it can be either a
program, a PDF file, . . .
Makefiles are processed by the make utility part of Unix, and most
compilation chains (e.g. Cygwin, mingw for Windows).
Makefile defines targets, and for each target a set of rules to build
them.
Each rule is a set of calls to program, including shell script, that
produce intermediate files.

Jérôme Hugues C Language 121/ 152

Anatomy of a makefile

Each makefile rule follows the same pattern
target: [dependences]
TABcommand1
TABcommand2
whenever dependences is newer than target, then command1,
command2 are executed sequentially.
Important: the TAB character shall be the first character of each
rule.
make builds a tree of dependences, and rebuilds only intermediate
targets for which dependences have been updated since last
invocation.

Jérôme Hugues C Language 122/ 152

Example of a Makefile

CC = gcc
CFLAGS = −Wall
BINARIES = h e l l o

a l l : $ (BINARIES)

$ (BINARIES) :
$ (CC) $ (CFLAGS) −o $@ $@ . c

c l e a n :
−rm − r f ∗ . o

d i s t c l e a n : c l e a n
−rm − r f $ (BINARIES)

Jérôme Hugues C Language 123/ 152

Example of a Makefile (cont’d)

hello is the first target, it is the default target when invoking only
“make”.
clean is used to clean intermediate generated files, executed when
invoking “make clean”.
distclean is used to clean all files, it executes first the clean target,
then perform additional clean up.

Jérôme Hugues C Language 124/ 152

Macros

Macros are useful to define reusable elements of a makefile, like

CC = gcc # name of the compiler
CFLAGS = -Wall -O2 # compilation flags
BINARIES = foo bar # binaries to build
all: $(BINARIES)
$(BINARIES):

$(CC) $(CFLAGS) -o $@ $@.c

Here, the special macro $@ refers to the file to be built.
$< to the input file (first dependence).

Jérôme Hugues C Language 125/ 152

About makefile

Mastering makefiles is an important process to compile large C
programs, like e.g. gcc itself.
One difficulty when defining a makefile is to have the correct list of
dependencies. This is usually controlled by external tools that will
build makefiles, like the IDE in use (such as AVR-Studio), or part
of the GCC toolchain like autoconf, automake,
This goes well beyond the scope of these lectures notes.

Jérôme Hugues C Language 126/ 152

Outline

11 Anatomy of a C toolchain

12 The preprocessor

13 Building large C programs

14 Debugging a C Program

Jérôme Hugues C Language 127/ 152

Why debugging?

As soon as we started programming, we found to our
surprise that it was not as easy to get programs
right as we had thought. Debugging had to be
discovered. I can remember the exact instant when
I realized that a large part of my life from then on
was going to be spent in finding mistakes in my
own programs.

Maurice Wilkes, 1949.

Jérôme Hugues C Language 128/ 152

About the debugger

When executing a program, the operating system allocates some
resources to run the program in a process (instance of a running
program).

A debugger allocates a particular execution environment to control
the execution of a program: set breakpoints, analyze the list of
calls, examine function parameters or the memory, etc.

To ease interaction and reporting, the program must be compiled
with particular arguments to store position of each instruction.
This is often referred to the debug mode.

Jérôme Hugues C Language 129/ 152

Using gdb

gdb is the GNU debugger, to be used with gcc.
To debug a C program, you must add the ’-g’ flag:

$ gcc -g -o hello hello.c

Then, start debugging session with gdb using

$ gdb hello

Jérôme Hugues C Language 130/ 152

Using gdb (cont’d)

We use the test from source/c/test_gdb.c

neraka-2:c hugues$ gdb ./test_gdb
(gdb) r -div
Starting program: test_gdb -div
Program received signal EXC_ARITHMETIC, Arithmetic exception.
0x0000000100000d66 in test_zerodiv () at test_gdb.c:29
29 printf ("%d\n", 1/x);
(gdb) bt
#0 0x0000000100000d66 in test_zerodiv () at test_gdb.c:29
#1 0x0000000100000dda in main (argc=2, argv=0x7fff5fbff510) at test_gdb.c:41
(gdb) print x
$1 = 0
(gdb) quit

Jérôme Hugues C Language 131/ 152

source/c/test_gdb.c

Using gdb (cont’d)

gdb has several functions to ease debugging

break (‘b‘) to place a breakpoint, the execution stops there

continue (‘c‘) to continue after a breakpoint

next (‘n‘) and step (‘s‘) are used for step-by-step execution;
step will reveal the execution of subprograms;

Advanced functions are available for a better control of breakpoints
management. See http://www.gnu.org/s/gdb/ for more details.

Jérôme Hugues C Language 132/ 152

http://www.gnu.org/s/gdb/

Other tools

The C toolchain may come with additional tools to

Evaluate coverage: is every statement executed at lease once?
gcov provides coverage analysis.

Profiling: how often is a piece of code evaluated?
gprof builds profile reports that can be used to tune some
compilation parameters like inlining.

These tools are usually embedded in IDE, or called through scripts
that produce HTML outputs like lcov.

Jérôme Hugues C Language 133/ 152

Part V

C for embedded sytems

Jérôme Hugues C Language 134/ 152

Outline

15 Bit manipulation

16 Storage class

17 Case study: Arduino AVR board

Jérôme Hugues C Language 135/ 152

C & embedded systems

C has been defined as a high-level language (compared to assembly
language) to implement advanced programs, but also as a low-level
one (compared to e.g. Pascal) to be close enough to the bare
machine.
C has some distinctive features to support low-level programming.
We review some of the in the following.

Jérôme Hugues C Language 136/ 152

Outline

15 Bit manipulation

16 Storage class

17 Case study: Arduino AVR board

Jérôme Hugues C Language 137/ 152

Bit-level operator

C has specific operators for bit-level operations:
& AND | OR ˆ XOR
˜ complement to 1 « left shift » right shift

Operators &, | and ˆ follow typical truth tables;
˜ change the value of each bit to the opposite value;
Left shift (resp. right) is equivalent to a multiplication (resp.
division) by 2.
C defines the corresponding composite operators:
&=,ˆ=, |=, «=, »=

Jérôme Hugues C Language 138/ 152

Bit-level operator: example

a = 01001101 : 77
b = 00010111 : 23

a & b = 00000101 : 5
a | b = 01011111 : 95
a ^ b = 01011010 : 90

~a = 10110010 : 178
b << 2 = 01011100 : 92
b << 5 = 11100000 : 224
b >> 1 = 00001011 : 11

See source/c/test_bits.c for more details.

Jérôme Hugues C Language 139/ 152

source/c/test_bits.c

Bit fields

Bit fields are used to map a particular structure onto a memory
area. C provides representation clauses to align members to a
specified number of bits.

typede f s t r u c t {
unsigned i n t reg_status : 1 ; /* f i e l d o f 1 b i t */
unsigned i n t data : 4 ;
unsigned i n t padding : 3 ; /* 3 b i t s o f padding */

} _b i t f i e l d ;

void f (void) {
_b i t f i e l d f i e l d ;
f i e l d . reg_status = 1 ;
f i e l d . data = 0x0b ;

}

Jérôme Hugues C Language 140/ 152

Enumerations representation clause

Enumerations are types representing particular discrete values.
They are mapped to integer values, computed from the position of
the literal.
This value may be forced, for instance:

enum s ta tu s {
on = 0x01 ,
o f f = 0x00

} ;

Such representation clause may be used for mapping states of an
IC to binary values.

Jérôme Hugues C Language 141/ 152

Outline

15 Bit manipulation

16 Storage class

17 Case study: Arduino AVR board

Jérôme Hugues C Language 142/ 152

register, const and volatile

C defines several storage classes to instruct how to treat variable or
parameter definitions:

register: tells the compiler to store the variable being declared
in a CPU register, e.g. register int x = 42;

const: makes variable value or pointer parameter
unmodifiable, e.g. const x = 42;

volatile: indicates that a variable can be changed by a
background routine, for instance an ISR. e.g.
volatile i = 10;.

Jérôme Hugues C Language 143/ 152

static

static variables are mapped onto a permanent area of memory
(data segment). This area is initialized at zero at program start up.

A nice effect of static variable is that they can serve as permanent
storage for variable, like in

#inc lude<s td i o . h>
void f (void) {

s t a t i c i n t s t o rage ; /* i n i t i a l i z e d to 0 */
p r i n t f (" s t o rage = %d\n" , s t o rage ++); /* v a r i e s from 1 to 10 */

}
i n t main (i n t argc , char ** argv) {

i n t i ;
f o r (i = 0 ; i < 10 ; i++) f () ;
r e turn 0 ; }

Jérôme Hugues C Language 144/ 152

Outline

15 Bit manipulation

16 Storage class

17 Case study: Arduino AVR board

Jérôme Hugues C Language 145/ 152

About the Arduino AVR board

The Arduino board is an “Open
Hardware” platform based on the
AVR 8-bit micro-controller.
It is a small CPU: 16Mhz, 32KB
for code, 1KB of SRAM, with
many interfaces: UART, I2C,
SPI, GPIOs, PWM, . . .

The Arduino is used for many projects: monitoring temperature,
tank of a car, performing nice effects, and even controlling UAVs

Jérôme Hugues C Language 146/ 152

LED Blinking

#inc lude<avr/ i o . h>
#inc lude<u t i l / de lay . h>

in t main (void)
{

/* I n i t i a l i z a t i o n part */
DDRB |= (1 << DDB5) ; /* s e t PB5 f o r output */
/* Main i n f i n i t e loop */
whi le (1) {

PORTB |= (1 << PORTB5) ; /* s e t PB5 high */
_delay_ms (1 0 0 0 . 0) ;
PORTB &= ~(1 << PORTB5) ; /* s e t PB5 low */
_delay_ms (1 0 0 0 . 0) ;

}
re turn 1 ;

}

Jérôme Hugues C Language 147/ 152

Part VI

Conclusion

Jérôme Hugues C Language 148/ 152

Outline

18 Conclusion

Jérôme Hugues C Language 149/ 152

Outline

18 Conclusion

Jérôme Hugues C Language 150/ 152

Conclusion I

These lectures notes covered basics of the C language. Many
elements are not part of the C language itself, and dedicated to
external libraries:

concurrency: flows of computations (threads), synchronization
mechanisms (mutexes, conditional variables, . . .) are either
standardized (POSIX, ARINC653) or ad hoc (RTEMS,
VxWorks);

math functions: large numbers, advanced mathematics (e.g.
matrices) are covered by GPGPU libraries (CUDA), OpenMP
(cluster computing);

distribution: Remote Procedure Calls, Distributed Objects,
Shared Memory are covered by dedicated frameworks like
CORBA, DDS, . . .

Jérôme Hugues C Language 151/ 152

Conclusion II

All these technologies rely heavily on the C language,
and associated tools to build large programs.
We will cover (some of) them in other courses ;)

Jérôme Hugues C Language 152/ 152

	Why C ?
	Background
	Hello World!

	Basics of the C programming language
	Elements of a C program
	Structure of a C program

	Predefined types
	Operators
	Control flow
	C Advanced topics
	Why engineering?
	User-defined types
	Pointers and memory management
	User-defined functions

	C Library
	C libraries
	Standard C library
	Math library
	Other libraries

	C toolchain
	Anatomy of a C toolchain
	The preprocessor
	Building large C programs
	Debugging a C Program

	C for embedded sytems
	Bit manipulation
	Storage class
	Case study: Arduino AVR board

	Conclusion
	Conclusion

