
Institut Supérieur de l’Aéronautique et de l’Espace

IN323 Software Engineering
Software Configuration Management with Subversion

Christophe Garion
DMIA – ISAE

Christophe Garion IN323 Software Engineering 1/ 30

License CC BY-NC-SA 3.0

This work is licensed under the Creative
Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported license (CC BY-NC-SA 3.0)

You are free to Share (copy, distribute and transmite) and to Remix (adapt) this
work under the following conditions:

Attribution – You must attribute the work in the manner specified
by the author or licensor (but not in any way that suggests that
they endorse you or your use of the work).
Noncommercial – You may not use this work for commercial
purposes.

Share Alike – If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same or
similar license to this one.

See http://creativecommons.org/licenses/by-nc-sa/3.0/.

Christophe Garion IN323 Software Engineering 2/ 30

http://creativecommons.org/licenses/by-nc-sa/3.0/

First problem: manage change

Problem
How to « remember » changes made to an application?

Why?

« go back » to remove bad changes
be able to propose a stable version of the application when continuing
its development
be able to propose an older version of the application by starting back
from an older version
. . .

Christophe Garion IN323 Software Engineering 3/ 30

First problem: discussion. . .

Idea
Have an history of the application using versions.

v1 v2 . . . v24

But. . .

which types of file can you manage?
å source codes, configuration and build files

how to manage history?
create directories with version numbers et copy all necessary files
at each time

å not usable!
add version numbers on file names

å how to guarantee numbers coherence?
å not possible for instance in Java for source files!

Second problem: share code

Problem
How to allow several developers/designers to share code/documents to
work at the same time?

Why?

to allow a team to work easily on the same project, particularly on the
source code
to manage conflicts when two persons work on the same document

Christophe Garion IN323 Software Engineering 5/ 30

Second problem: students solutions. . .

1 sharing documents by email
å completely unmanageable

2 open rights on one student’s account
å unsecured. . .
å cannot manage conflicts

student1 myfile.c student2

get get

write
write

lost change!

3 use Dropbox or equivalent system
not really a solution
limited history
no diffs, no commit messages
limited conflict management

Christophe Garion IN323 Software Engineering 6/ 30

Second problem: students solutions. . .

3 use Dropbox or equivalent system
not really a solution
limited history
no diffs, no commit messages
limited conflict management

Christophe Garion IN323 Software Engineering 6/ 30

Outline

1 Revision control

2 Subversion

3 Process

Christophe Garion IN323 Software Engineering 7/ 30

Revision control

To solve the previous problems, we will use a revision control system.

A revision control software (RCS) allows to easily manage:

changes made on the project files
multiple users working on the project
branches to develop experimental features or correct bugs without
changing the application main version

Christophe Garion IN323 Software Engineering 8/ 30

Revision control: concepts

1 2 . . . 24

25

M1→2 M2→3 M23→24

repository

file1

file2

dev. machine

checkout
file1

file2

file3

dev. machinecommit

repository

M24→25

file1

file2

dev. machine

checkout
file1

file2

file3

dev. machineupdate

Documents evolutions are represented by revisions.
Revisions are often denoted by natural numbers: revision 1, revision 2 etc.

To go from a revision to another, changesets are applied to the project
files.
A changeset can change several files: it represents the transition from a
“coherent” state of the project to another “coherent” state.
Revision control softwares only keep changesets.

Christophe Garion IN323 Software Engineering 9/ 30

Revision control: concepts

1 2 . . . 24

25

M1→2 M2→3 M23→24

repository

file1

file2

dev. machine

checkout
file1

file2

file3

dev. machinecommit

repository

M24→25

file1

file2

dev. machine

checkout
file1

file2

file3

dev. machineupdate

Files managed by the RCS are kept in a repository.

The repository, like a DBMS, respects the ACID properties to ensure the
atomicity and coherence of changes:

atomicity of changesets
consistency
isolation from other changes
durability

Christophe Garion IN323 Software Engineering 9/ 30

Revision control: concepts

1 2 . . . 24

25

M1→2 M2→3 M23→24

repository

file1

file2

dev. machine

checkout

file1

file2

file3

dev. machinecommit

repository

M24→25

file1

file2

dev. machine

checkout
file1

file2

file3

dev. machineupdate

Files managed by the RCS are kept in a repository.

To work on the project, you have to make a local copy of the repository.
You will obtain by default the last revision of the repository, buy you can
choose.

This operation is called a checkout.

Christophe Garion IN323 Software Engineering 9/ 30

Revision control: concepts

1 2 . . . 24

25

M1→2 M2→3 M23→24

repository

file1

file2

dev. machine

checkout

file1

file2

file3

dev. machinecommit

repository

M24→25

file1

file2

dev. machine

checkout
file1

file2

file3

dev. machineupdate

When you have made the desired changes on the files, you can submit your
changes to the repository.

This operation is called a commit.

N.B.
Conflicts may arise during this operation!

Christophe Garion IN323 Software Engineering 9/ 30

Revision control: concepts

1 2 . . . 24

25

M1→2 M2→3 M23→24

repository

file1

file2

dev. machine

checkout
file1

file2

file3

dev. machinecommit

repository

M24→25

file1

file2

dev. machine

checkout

file1

file2

file3

dev. machineupdate

When you want your local copy to be up-to-date with the repository, you
make an update operation.

N.B.
Conflicts may arise during this operation!

Christophe Garion IN323 Software Engineering 9/ 30

Outline

1 Revision control

2 Subversion
Basic usage
Conflicts management
Viewing logs and changes
Branches

3 Process

Christophe Garion IN323 Software Engineering 10/ 30

Subversion

The RCS we will use at ISAE is Subversion, a free software available on
multiple platforms.

The Apache Software Foundation (2013).
Apache Subversion.
http://subversion.apache.org/.

Collins-Sussman, B., B. W. Fitzpatrick, and C. Michael Pilato
(2004).
Version control with Subversion.
O’Reilly.
http://svnbook.red-bean.com/.

Mason, Mike (2006).
Pragmatic Version Control Using Subversion.
2nd edition.
Pragmatic Programmers.

Christophe Garion IN323 Software Engineering 11/ 30

http://subversion.apache.org/
http://svnbook.red-bean.com/

Outline

1 Revision control

2 Subversion
Basic usage
Conflicts management
Viewing logs and changes
Branches

3 Process

Christophe Garion IN323 Software Engineering 12/ 30

Usual commands

~alice/ - rev. 1

file1.txt

Coucou

REPOSITORY - rev. 1

file1.txt

Coucou

file3.txt

c’est moi

~bob/ - rev. 1

file1.txt

Coucou

file2.txt

Hello

file3.txt

c’est moi

Alice copies the repository (idem for Bob):

shell (alice)

[alice@computer]~ $ svn checkout URL_REPOSITORY
A scm/alice/file1.txt
Checked out revision 1.

Usual commands

~alice/ - rev. 1

file1.txt

Coucou

file2.txt

Hello

REPOSITORY - rev. 1

file1.txt

Coucou

file3.txt

c’est moi

~bob/ - rev. 1

file1.txt

Coucou

file2.txt

Hello

file3.txt

c’est moi

Alice creates a new file.

Usual commands

~alice/ - rev. 1

file1.txt

Coucou

file2.txt

Hello

REPOSITORY - rev. 1

file1.txt

Coucou

file3.txt

c’est moi

~bob/ - rev. 1

file1.txt

Coucou

file2.txt

Hello

file3.txt

c’est moi

She can verify that her local copy is not identical to the repository.

shell (alice)

[alice@computer]~ $ svn status
? file2.txt

Usual commands

~alice/ - rev. 2

file1.txt

Coucou

file2.txt

Hello

REPOSITORY - rev. 2

file1.txt

Coucou

file2.txt

Hello

file3.txt

c’est moi

~bob/ - rev. 1

file1.txt

Coucou

file2.txt

Hello

file3.txt

c’est moi

She can then add the file and submit it to the repository.

shell (alice)

[alice@computer]~ $ svn add file2.txt
A file2.txt
Adding file2.txt
[alice@computer]~ $ svn commit -m "adding file2.txt"
Transmitting file data .
Committed revision 2.

Usual commands

~alice/ - rev. 2

file1.txt

Coucou

file2.txt

Hello

REPOSITORY - rev. 2

file1.txt

Coucou

file2.txt

Hello

file3.txt

c’est moi

~bob/ - rev. 2

file1.txt

Coucou

file2.txt

Hello

file3.txt

c’est moi

Bob can update his local copy.

shell (bob)

[bob@computer]~ $ svn update
Updating ’.’:
A file2.txt
Updated to revision 2.

Usual commands

~alice/ - rev. 2

file1.txt

Coucou

file2.txt

Hello

REPOSITORY - rev. 3

file1.txt

Coucou

file2.txt

Hello

file3.txt

c’est moi

~bob/ - rev. 3

file1.txt

Coucou

file2.txt

Hello

file3.txt

c’est moi

Bob adds a file and submit it.

Usual commands

~alice/ - rev. 4

file1.txt

Coucou

file2.txt

Bonjour

REPOSITORY - rev. 4

file1.txt

Coucou

file2.txt

Bonjour

file3.txt

c’est moi

~bob/ - rev. 3

file1.txt

Coucou

file2.txt

Hello

file3.txt

c’est moi

Alice modifies file2.txt and submit it.

shell (alice)

[alice@computer]~ $ svn commit -m "changing Hello in file2.txt"
Sending file2.txt
Transmitting file data .
Committed revision 4.

Outline

1 Revision control

2 Subversion
Basic usage
Conflicts management
Viewing logs and changes
Branches

3 Process

Christophe Garion IN323 Software Engineering 14/ 30

Conflicts

~alice/ - rev. 1

file1.txt

Coucou

REPOSITORY - rev. 1

file1.txt

Coucou

~bob/ - rev. 1

file1.txt

Coucou

Conflicts

~alice/ - rev. 2

file1.txt

Bonjour

REPOSITORY - rev. 2

file1.txt

Bonjour

~bob/ - rev. 1

file1.txt

Coucou

Alice modifies file1.txt and commits her version.

Conflicts

~alice/ - rev. 2

file1.txt

Bonjour

REPOSITORY - rev. 2

file1.txt

Bonjour

~bob/ - rev. 1

file1.txt

Hello

Bob modifies file1.txt and wants to commit his version.

shell (bob)

[bob@computer]~ $ svn commit -m "changing Coucou to Hello in file1.txt"
Sending file1.txt
svn: E155011: Commit failed (details follow):
svn: E155011: File ’/home/tof/Cours/IN323/bob/file1.txt’ is out of date
svn: E160028: File ’/file1.txt’ is out of date

Conflicts

~alice/ - rev. 2

file1.txt

Bonjour

REPOSITORY - rev. 2

file1.txt

Bonjour

~bob/ - rev. 1

file1.txt

Hello

Bob can update his local copy.

shell (bob)

[bob@computer]~ $ svn update
Updating ’.’:
C file1.txt
Updated to revision 2.
Summary of conflicts:
Text conflicts: 1

Conflicts

~alice/ - rev. 2

file1.txt

Bonjour

REPOSITORY - rev. 2

file1.txt

Bonjour

~bob/ - rev. 1

file1.txt

Hello

Bob chooses to edit (e) this file. He obtains a temporary file containing
both his version and the repository version.

file1.txt.tmp

<<<<<<< .mine
Hello
=======
Bonjour
>>>>>>> .r2

Conflicts

~alice/ - rev. 2

file1.txt

Bonjour

REPOSITORY - rev. 2

file1.txt

Bonjour

~bob/ - rev. 2

file1.txt

Hello

Bob modifies the temporary file to keep his version. He choose to mark
the conflict as resolved.

shell (bob)

[bob@computer]~ $ svn resolved file1.txt
Resolved conflicted state of ’file1.txt’

Conflicts

~alice/ - rev. 2

file1.txt

Bonjour

REPOSITORY - rev. 3

file1.txt

Hello

~bob/ - rev. 3

file1.txt

Hello

Bob can then commit its changes to the repository.

shell (bob)

[bob@computer]~ $ svn commit -m "changing Coucou to Hello in file1.txt"
Sending file1.txt
Transmitting file data .
Committed revision 3.

Conflicts

~alice/ - rev. 2

file1.txt

Guten Tag

REPOSITORY - rev. 3

file1.txt

Hello

~bob/ - rev. 3

file1.txt

Hello

Alice modifies her local copy of file1.txt. She updates her copy,
discovers the conflict and chooses to postpone (p) the conflict
management.

shell Alice

[alice@computer]~ $ svn update
Updating ’.’:
C file1.txt
Updated to revision 3.
Summary of conflicts:
Text conflicts: 1

Conflicts

~alice/ - rev. 2

file1.txt

<<<<<<< .mine
Guten Tag

=======
Hello
>>>>>>> .r3

REPOSITORY - rev. 3

file1.txt

Hello

~bob/ - rev. 3

file1.txt

Hello

Subversion has created several files corresponding to different versions of
file1.txt: one for revision 2, one for revision 3 and the local copy
(file1.txt.mine).
file1.txt has the same syntax as presented previously.

shell Alice

[alice@computer]~ $ ls
file1.txt
file1.txt.mine
file1.txt.r2
file1.txt.r3

Conflicts

~alice/ - rev. 2

file1.txt

Guten Tag

REPOSITORY - rev. 3

file1.txt

Hello

~bob/ - rev. 3

file1.txt

Hello

Alice can choose the file she wants or modify file1.txt. She can specify
to Subversion that she wants to keep her local copy to solve the conflict.
She has to commit her changes after (not done here!).

shell Alice

[alice@computer]~ $ svn resolve --accept mine-full file1.txt
Resolved conflicted state of ’file1.txt’

Outline

1 Revision control

2 Subversion
Basic usage
Conflicts management
Viewing logs and changes
Branches

3 Process

Christophe Garion IN323 Software Engineering 16/ 30

Logs

Obtaining the commit messages for a specific file:

shell (bob)

[bob@computer]~ $ svn log file1.txt
--
r3 | bob | 2014-07-09 11:09:05 +0200 (Wed, 09 Jul 2014) | 1 line

changing Coucou to Hello in file1.txt
--
r2 | alice | 2014-07-09 11:09:01 +0200 (Wed, 09 Jul 2014) | 1 line

changing Coucou to Bonjour in file1.txt
--
r1 | tof | 2014-07-09 11:08:58 +0200 (Wed, 09 Jul 2014) | 1 line

initial import of file1.txt
--

Christophe Garion IN323 Software Engineering 17/ 30

Diffs

Obtaining the set of changes between two revisions for a file:

shell (bob)

[bob@computer]~ $ svn diff -r2:3 file1.txt
Index: file1.txt
===
--- file1.txt (revision 2)
+++ file1.txt (revision 3)
@@ -1 +1 @@
-Bonjour
+Hello

N.B.
The result of diff is called a patch: those are the changes to apply
on file1.txt to go from revision 2 to revision 3.

Christophe Garion IN323 Software Engineering 18/ 30

Outline

1 Revision control

2 Subversion
Basic usage
Conflicts management
Viewing logs and changes
Branches

3 Process

Christophe Garion IN323 Software Engineering 19/ 30

What are branches useful for?

Definition (branch)
A branch is a development line that exists independently of other lines.

Branches in Subversion allow to:

create multiple versions of the same product
create a branch for debugging
create a branch for experimental features
mix and match different lines of development
maintain a release branch for production code
. . .

Christophe Garion IN323 Software Engineering 20/ 30

What are tags useful for?

Definition (tag)
A tag is a symbolic name for a set files.

Tags in Subversion allow to:

have a symbolic name for a set of files, each with a particular revision
number
put milestones in your project
eventually mix revision numbers

Christophe Garion IN323 Software Engineering 21/ 30

Branches and tags: example

release version 1.0 of your project:
create a tag REL-1.0
create a branch RB-1.0 to eventually work on this release

fix the bug number 3035:
create a branch BUG-3035
create a tag PRE-3035
after correcting the bug, create a tag POST-3035

experiment with a new GUI:
create a branch TRY-new-GUI

. . .

Christophe Garion IN323 Software Engineering 22/ 30

Organizing your project

A classical repository organization for Subversion projects:

project

trunk

branches

tags

trunk: contains the main development line
branches: contains branches ,

tags: contains tags ,

Christophe Garion IN323 Software Engineering 23/ 30

Creating the necessary directories

Bob wants to create a release branch for his project. He needs first to
create the branches directory:

shell (bob)

[bob@computer]~ $ svn mkdir URL/branches -m "creating branches dir."

Committed revision 4.

N.B.
Use svn mkdir with URL to create directories to be managed by
subversion, it is easier and faster.

Christophe Garion IN323 Software Engineering 24/ 30

Creating a branch

Creating branches or tags in Subversion is just copying directories!

Bob wants to create a branch using the trunk main development line:

shell (bob)

[bob@computer]~ $ svn copy -m "creating branch for DEV 1.0" URL/trunk
URL/branches/DEV-1.0

Committed revision 5.

Now he can checkout the branch as usual:

shell (bob)

[bob@computer]~ $ svn checkout URL/branches/DEV-1.0 dev-1.0
A dev-1.0/file1.txt
Checked out revision 5.

Christophe Garion IN323 Software Engineering 25/ 30

Switching to a branch

Bob can also switch to a branch from another one (here from trunk for
instance):

shell (bob)

[bob@computer]~ $ svn switch URL/branches/DEV-1.0
At revision 5.

All changes made here are taken into account in the DEV-1.0 branch.

Christophe Garion IN323 Software Engineering 26/ 30

Merging branches

Suppose now that Bob changed file1.txt in the DEV-1.0 branch and
wants to merge its changes into the main development line (execute this in
a working copy of the trunk):

shell (bob)

[bob@computer]~ $ svn merge URL/branches/DEV-1.0
--- Merging r5 through r6 into ’.’:
U file1.txt
[bob@computer]~ $ svn commit -m "merging branch DEV-1.0 into trunk"
--- Recording mergeinfo for merge of r5 through r6 into ’.’:
U .
Sending .
Sending file1.txt
Transmitting file data .
Committed revision 7.

N.B.
Beware of conflicts, update your working copy before merging!

Christophe Garion IN323 Software Engineering 27/ 30

Outline

1 Revision control

2 Subversion

3 Process

Christophe Garion IN323 Software Engineering 28/ 30

How to use Subversion?

checkout

. . .

update

changes

update

conflits management

commit

Verifications
å code compiles
å tests passed

Christophe Garion IN323 Software Engineering 29/ 30

How to use Subversion?

checkout

. . .

update

changes

update

conflits management

commit

Verifications
å code compiles
å tests passed

Christophe Garion IN323 Software Engineering 29/ 30

How to use Subversion?

checkout

. . .

update

changes

update

conflits management

commit

Verifications
å code compiles
å tests passed

Conflicts management
Working with other dev. needed!

Christophe Garion IN323 Software Engineering 29/ 30

How to use Subversion?

checkout

. . .

update

changes

update

conflits management

commit

Message
Use explicit commit message!
Describe what is concerned with the com-
mit, not how you achieve the modifications
(that is the function of the diff/patch).

Christophe Garion IN323 Software Engineering 29/ 30

When committing

each commit must be coherent: your application should compile and
work normally
commit each time you add/correct a single functionality. Do not
commit big changesets
to be able to do regression tests, you must have small changesets

Christophe Garion IN323 Software Engineering 30/ 30

	Revision control
	Subversion
	Basic usage
	Conflicts management
	Viewing logs and changes
	Branches

	Process

