
Institut Supérieur de l’Aéronautique et de l’Espace

IN112 Mathematical Logic

Christophe Garion
DMIA – ISAE

Christophe Garion IN112 IN112 Mathematical Logic 1/ 382

License CC BY-NC-SA 3.0

This work is licensed under the Creative
Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported license (CC BY-NC-SA 3.0)

You are free to Share (copy, distribute and transmite) and to Remix (adapt) this
work under the following conditions:

Attribution – You must attribute the work in the manner specified
by the author or licensor (but not in any way that suggests that
they endorse you or your use of the work).
Noncommercial – You may not use this work for commercial
purposes.

Share Alike – If you alter, transform, or build upon this work,
you may distribute the resulting work only under the same or
similar license to this one.

See http://creativecommons.org/licenses/by-nc-sa/3.0/.

Christophe Garion IN112 IN112 Mathematical Logic 2/ 382

http://creativecommons.org/licenses/by-nc-sa/3.0/

Quotes. . .

It is reasonable to hope that the relationship between
computation and mathematical logic will be as fruitful in the
next century as that between analysis and physics in the last.
The development of this relationship demands a concern for both
applications and mathematical elegance.

John Mac Carthy, 1963

“Contrariwise,” continued Tweedledee, “if it was so, it might be;
and if it were so, it would be; but as it isn’t, it ain’t. That’s
logic.”

Lewis Carroll, Alice’s Adventures in Wonderland

Humans make illogical decisions.

Mr. Spock, Star Treck

Christophe Garion IN112 IN112 Mathematical Logic 3/ 382

Outline

1 - Introduction
2 - Propositional logic language and semantics
3 - Formal systems for propositional logic
4 - First-order logic language and semantics
5 - Formal systems for first-order logic
6 - Program analysis with first-order logic
7 - Formal number theory
8 - Logic programming

Christophe Garion IN112 IN112 Mathematical Logic 4/ 382

Outline of part 1 - Introduction

1 - Introduction

1 History of logic

2 A first guided tour on mathematical logic

3 A short bibliography

4 Agenda

Christophe Garion IN112 IN112 Mathematical Logic 5/ 382

What is mathematical logic?

Informal definition
Mathematical logic is the study of the validity of an argument as a
mathematical object.

First question: what is an argument?
An argument is composed of:

a set of declarative sentences called premises
a word, therefore
a declarative sentence called conclusion

Second question: what is validity?
Validity of an argument can be defined:

in model theory: is the conclusion true when premises are?
in proof theory: does the argument respect some rules?

Christophe Garion IN112 IN112 Mathematical Logic 6/ 382

What is mathematical logic?

Informal definition
Mathematical logic is the study of the validity of an argument as a
mathematical object.

Second question: what is validity?
Validity of an argument can be defined:

in model theory: is the conclusion true when premises are?
in proof theory: does the argument respect some rules?

Christophe Garion IN112 IN112 Mathematical Logic 6/ 382

A multi-disciplinary field

Philosophy Mathematics Computer Science

• what is true?
• what is false?

• what is a proof ?
• what mathematical
structures do we
need to define a
proof?

• is this proof correct?

• is this program cor-
rect?

• can I automatically
produce code that re-
spect those specifica-
tions?

• can we prove auto-
matically that this
theorem is true?

Christophe Garion IN112 IN112 Mathematical Logic 7/ 382

Outline of part 1 - Introduction

1 History of logic

2 A first guided tour on mathematical logic

3 A short bibliography

4 Agenda

Christophe Garion IN112 IN112 Mathematical Logic 8/ 382

From Antiquity to 18th century

Aristotle (384 BC - 322 BC)

the first work on logic as an autonomous
discipline
reasoning tool: syllogism

every man is mortal
every Greek is a man
every Greek is mortal

reasoning does not depend on the content of
propositions but on their form
notion of validity
notion of proof by contradiction

-400 0 400 800 1200 1600 2000

Christophe Garion IN112 IN112 Mathematical Logic 9/ 382

From Antiquity to 18th century

Megarians/Stoics school (500 BC - 200 BC)

a logic of propositions: atomic propositions
and composed propositions
implication, disjunction, conjunction
meaning of sentences (lektón)
modalities

-400 0 400 800 1200 1600 2000

Christophe Garion IN112 IN112 Mathematical Logic 10/ 382

From Antiquity to 18th century

Medieval/scholastic logic (500 AD - 1400 AD)

teached in faculty: trivium (logic + grammar +
rethorics)
mainly works on Aristotle logic and syllogisms

-400 0 400 800 1200 1600 2000

Christophe Garion IN112 IN112 Mathematical Logic 11/ 382

From Antiquity to 18th century

Gottfried Wilhelm Leibniz (1646 - 1716)

a visionary in philosophy and mathematics
de arte combinatoria: a first step for showing
isomorphism between propositional calculus
and classes calculus
lingua characteristica universalis: a written
artificial language (a sign ≡ an idea) based on
prime numbers
calculus ratiocinator (unachieved work): logic
as calculus on signs, same idea as reasoning on
equations

-400 0 400 800 1200 1600 2000

Christophe Garion IN112 IN112 Mathematical Logic 12/ 382

The arising of modern logic

George Boole (1815 - 1864)

english algebraic school
same idea as Leibniz’s: logic viewed as a
calculus
the first real mathematization of logic
An Investigation of the Laws of Thought
(1854)

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 13/ 382

The arising of modern logic

George Boole (1815 - 1864)

based on class algebra
x , y , z : propositions representing concepts
+, −, ×: exclusive disjunction, negation,
conjunction
idempotency: p and p is equivalent to p

that is why you can choose 1 and 0 as they are
the solution to the equation x2 = x

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 13/ 382

The arising of modern logic

George Boole (1815 - 1864)

6= is not algebraic, how to express “some x are
y”?
algebra can be a tool for logic, but logic is
about deductions/inferences, not equations

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 13/ 382

The arising of modern logic

Gottlob Frege (1848 - 1925)

a formal and symbolic language Begriffsschrift
(1879)

worked on foundations of arithmetics as a
branch of logic
Grundgesetze der Arithmetik

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 14/ 382

The arising of modern logic

Gottlob Frege (1848 - 1925)

but there is a paradox, discovered by Russel
Hardly anything more unfortunate
can befall a scientific writer than to
have one of the foundations of his
edifice shaken after the work is
finished. This was the position I was
placed in by a letter of Mr. Bertrand
Russell, just when the printing of this
volume was nearing its completion.

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 14/ 382

The arising of modern logic

David Hilbert (1862 - 1943)

Grundlagen der Geometrie (1899):
axiomization of geometry
the famous 23 problems for the 20th century
Hilbert’s program (1920)

all mathematics follows from a set of axioms
this set of axioms can be proved to be
consistent

Grundlagen der Mathematik (1934/1939)
a formal system for deduction

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 15/ 382

The arising of modern logic

Bertrand Russel (1872 - 1970)

goal: find solid foundations for mathematics
Principles of mathematics (1903)

destroying naive set theory: E = {x |x /∈ x}
definition of type theory

Principia mathematica (1910)
derive all mathematical truths from axioms +
inference rules in symbolic logic
demonstration of 1+ 1 = 2 on page 379!

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 16/ 382

The arising of modern logic

Kurt Gödel (1906 - 1978)

Die Vollständigkeit des Axiome des logischen
Funktionenkalküls (1930): completness
theorem
Über formal unentscheidbare Sätze der
Principia Mathematica und verwandter
Systeme (1931): incompletness theorems

if arithmetics is consistent, there are
statements such that they cannot be proved
in arithmetics nor their negations.
consistency of arithmetics cannot be proved in
arithmetics

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 17/ 382

The arising of modern logic

Jacques Herbrand (1908 - 1931)

a fundamental result in logic: reduction of
first-order logic to propositional logic
the first step to automated deduction

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 18/ 382

The arising of modern logic

Gerhard Gentzen (1909 - 1945)

natural deduction
sequent calculus
Hauptsatz or cut-elimination theorem

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 19/ 382

The arising of modern logic

Alonzo Church (1903 - 1995)

Entscheidungsproblem
father of the lambda calculus
the Church-Turing thesis
Church-Rosser theorem

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 20/ 382

The arising of modern logic

Alfred Tarski (1902 - 1983)

works on model theory: semantics
the notion of logical consequence
metamathematics as “ordinary” mathematics
decidability results

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 21/ 382

The arising of modern logic

Luitzen Brouwer (1898 - 1966)

a constructivist view of proofs
a proof must build truth, not only discover it
problem with tertium non datur (law of
excluded middle)
example: prove that there is two irrational
numbers a and b such that ab is rational

very important for Computer Science

1800 1850 1900 1950 2000

Christophe Garion IN112 IN112 Mathematical Logic 22/ 382

Outline of part 1 - Introduction

1 History of logic

2 A first guided tour on mathematical logic
Model theory vs. proof theory
Some examples and what can be done
Some computational aspects
Mathematical logic for Computer Science

3 A short bibliography

4 Agenda

Christophe Garion IN112 IN112 Mathematical Logic 23/ 382

Outline of part 1 - Introduction

1 History of logic

2 A first guided tour on mathematical logic
Model theory vs. proof theory
Some examples and what can be done
Some computational aspects
Mathematical logic for Computer Science

3 A short bibliography

4 Agenda

Christophe Garion IN112 IN112 Mathematical Logic 24/ 382

Argument as a mathematical object?

When verifying mathematically if an argument is valid, two steps are
needed:

1. define a mathematical language to represent the sentences in-
volved in the argument

should not be difficult, as the sentences are declarative . . .
. . . but sometimes not so easy (sentences involving time,
modalities etc.)

We then work with:

Σ: a set of formulas representing the premises
ϕ: a formula representing the conclusion

Christophe Garion IN112 IN112 Mathematical Logic 25/ 382

Argument as a mathematical object?

When verifying mathematically if an argument is valid, two steps are
needed:

2. define a mathematical relation R such that Σ R ϕ holds iff the
argument “Σ therefore ϕ” is valid.

Two possible relations:

|= called logical consequence in model theory
` called deduction in proof theory

Christophe Garion IN112 IN112 Mathematical Logic 25/ 382

Validity of an argument in model theory

In model theory, verifying that an argument is correct is proving that
Σ |= ϕ holds.

Principle (validity in model theory)
An argument is valid iff when premises are true, then conclusion is
also true.

Problem: what does mean “a statement is true” ?

Remember that we are working with declarative statements, so we can
speak about the truth value of a statement, e.g.:

sentence truth value
1. this will be the most interesting lecture I’ve ever had true
2. screw this lecture, I prefer reading the newspaper false
3. will I take pizza at lunch? 8

Christophe Garion IN112 IN112 Mathematical Logic 26/ 382

Some assumptions on truth values

We will use classical logic:

there are only two truth values: true/false, T/F, 1/0. . .
the truth value of a composed statement depends only of the truth
values of the statements which compose it

E.g., the truth value of “A and B” depends on the truth value of A
and the truth value of B.

The truth value of a statement is established in an interpretration in
which we set the truth values of the basic assertions of our language.

For instance, in our world/interpretation:

“students are intelligent human beings” is true;
“students have fins” is false.

But we can imagine (particularly in mathematics) an interpretation in
which students have fins (or are not intelligent human beings). . .

Christophe Garion IN112 IN112 Mathematical Logic 27/ 382

So, how to prove the validity of an argument in MT?

Easy:
1 among all the possible interpretations, find those in which all the

premises are true (let us call this set of interpretations I)
2 for each interpretation i in I , verify that the conclusion is true in i

. . . but not very efficient for “real-world” problems (we will discuss about
this during the lecture).

Christophe Garion IN112 IN112 Mathematical Logic 28/ 382

Validity of an argument in proof theory

OK for model theory, but when you have to prove a lemma/theorem
during a math exam, you write all the necessary steps to go from the
hypotheses to the conclusion.

The examiner verify that each step of your argument uses a correct
reasoning rule.

This is in fact proof theory, and if your argument is valid, it will be
denoted by Σ ` ϕ (ϕ can be deduced from Σ).

In proof theory, we consider:
some rewritting rules which transform statements into other
statements, the inference rules
some assertions called axioms which are true “by nature”

Principle (validity in proof theory)
An argument is valid iff conclusion is obtained from premises and
axioms by using inference rules.

Christophe Garion IN112 IN112 Mathematical Logic 29/ 382

Inference rules: examples

Let us suppose that you have some hypotheses Σ about a function f on R
and you want to prove from Σ that f is C1.
Thus you should prove that f is continuous and that its derivative exists
and is also continuous.

You know that if f is differentiable then f is continuous. So if you prove
from Σ that f is differentiable, then f is continuous.

Doing this, you use a logical inference rule called Modus Ponens (MP):
“from A implies B and A you can deduce B”.

Notice that this rule can be applied to every argument of the same form!

Suppose that you can now prove from Σ that f ′ is continuous. Then you
can use a logical inference rule saying that
“if you prove A and you prove B, then you prove A and B”

to prove that f is C1.

Christophe Garion IN112 IN112 Mathematical Logic 30/ 382

Our argument in proof theory

An argument in proof theory can be represented by a tree whose

root is the conclusion of the argument

leaves are hypotheses or axioms
“childrening process” is inference rule applying

. . .

...
f ∈ D1 if f ∈ D1

then f ∈ C0

(MP)
f ∈ C0

. . .

...
f ′ ∈ C0

(&)
f ∈ C0 and f ′ ∈ C0 if f ∈ C0 and f ′ ∈ C0

then f ∈ C1

(MP)
f ∈ C1

Christophe Garion IN112 IN112 Mathematical Logic 31/ 382

Links between model and proof theory

Theorem (soundness and completness)
An argument is valid in proof theory iff it is valid in model theory.

Model theory
semantic properties
truth value, interpretation
logical consequence . . .

Proof theory
syntactic properties
axioms, inference rules
deduction . . .

soundness

completness

Christophe Garion IN112 IN112 Mathematical Logic 32/ 382

Links between model and proof theory

The soudness and completness theorem is the mathematical version of the
following statement:

What is provable is true and what is true is provable.

You can use those two tools depending on what you want to show:

what to show model theory proof theory
argument is correct prove that for every in-

terpretation conclusion
is true

find one possible proof
using inference rules

argument is not correct exhibit one counterex-
ample in which conclu-
sion is false

prove that this is not
possible to build a
proof using inference
rules

Christophe Garion IN112 IN112 Mathematical Logic 32/ 382

Deduction, abduction, induction

Let us define:
L: a set of formulas representing rules
H: a set of formulas representing facts
ϕ: a formula representing the conclusion of an argument

Definition (deduction)
Find/verify that ϕ s.t. L ∪H R ϕ.

Definition (abduction)
Find H s.t. L ∪H R ϕ.

Definition (induction)
Find L s.t. L ∪H R ϕ.

Christophe Garion IN112 IN112 Mathematical Logic 33/ 382

Outline of part 1 - Introduction

1 History of logic

2 A first guided tour on mathematical logic
Model theory vs. proof theory
Some examples and what can be done
Some computational aspects
Mathematical logic for Computer Science

3 A short bibliography

4 Agenda

Christophe Garion IN112 IN112 Mathematical Logic 34/ 382

Argument: a first example

Let us consider the following argument:
John has travelled by bus or by train. If he has travelled by bus
or by car, he has been late and has missed the meeting. He was
not late. Therefore he has travelled by train.

Christophe Garion IN112 IN112 Mathematical Logic 35/ 382

Argument: a first example

Let us consider the following argument:
John has travelled by bus or by train. If he has travelled by bus
or by car, he has been late and has missed the meeting. He was
not late. Therefore he has travelled by train.

We can represent this argument by using a propositional language in
which variables represent assertions:

Σ =

 b ∨ t,
b ∨ c → l ∧m,
¬l

ϕ ≡ t

Christophe Garion IN112 IN112 Mathematical Logic 35/ 382

Model theory: a first example

To prove that the previous argument is correct in model theory, we have to
check that in every possible interpretation, when the formulas in Σ are all
true then ϕ is also true.

As we have 5 variables, we have 32 cases to examine:
t b c l m b ∨ t b ∨ c → l ∧ m ¬l
T T T T T T T F
T T T T F T F F
T T T F T T F T
T T T F F T F T
T T F T T T T F
T T F T F T F F
T T F F T T F T
T T F F F T F T
T F T T T T T F
T F T T F T F F
T F T F T T F T
T F T F F T F T
T F F T T T T F
T F F T F T T F
T F F F T T T T
T F F F F T T T
F T T T T T T F
F T T T F T F F
F T T F T T F T
F T T F F T F T
. . .

Model theory: a first automated example

OK, we can prove “by hand” that ϕ is true in every interpretation in which
Σ is true, but this is fastidious (and we are doing Computer Science
because we are lazy).

We can use a SAT solver: a SAT solver is a software which given a set of
propositional formulas checks if there is an interpretation in which all the
formula are true.

Een, Niklas and Niklas Sörensson (2013).
The MiniSat page.
http://minisat.se/.

Christophe Garion IN112 IN112 Mathematical Logic 37/ 382

http://minisat.se/

Model theory: a first automated example

OK, we can prove “by hand” that ϕ is true in every interpretation in which
Σ is true, but this is fastidious (and we are doing Computer Science
because we are lazy).

We can use a SAT solver: a SAT solver is a software which given a set of
propositional formulas checks if there is an interpretation in which all the
formula are true.

Example with {a, a→ b}:

minisat-ex.sat

p cnf 2 2
1 0
-1 2 0

produces the expected result.

Christophe Garion IN112 IN112 Mathematical Logic 37/ 382

Model theory: a first automated example

OK, we can prove “by hand” that ϕ is true in every interpretation in which
Σ is true, but this is fastidious (and we are doing Computer Science
because we are lazy).

We can use a SAT solver: a SAT solver is a software which given a set of
propositional formulas checks if there is an interpretation in which all the
formula are true.

Example with {a, a→ b,¬b}:

minisat-ex-false.sat

p cnf 2 3
1 0
-1 2 0
-2 0

produces the expected result.

Christophe Garion IN112 IN112 Mathematical Logic 37/ 382

Using SAT on our example

We want to prove that t is true in all interpretations in which formulas of
Σ are all true. Not the same problem. . .

Let us look at how you can prove t from Σ.

Christophe Garion IN112 IN112 Mathematical Logic 38/ 382

Using SAT on our example

We want to prove that t is true in all interpretations in which formulas of
Σ are all true. Not the same problem. . .

Let us look at how you can prove t from Σ.

Christophe Garion IN112 IN112 Mathematical Logic 38/ 382

Using SAT on our example

We want to prove that t is true in all interpretations in which formulas of
Σ are all true. Not the same problem. . .

Let us look at how you can prove t from Σ.

First, let us look at the classical tactics used by students to prove
something:

“trivial” 8 (reserved to prof.)
direct proof 8 (too painful for their brain)
induction 8
contraposition 8
proof by contradiction hmmm, let’s try

Christophe Garion IN112 IN112 Mathematical Logic 38/ 382

Using SAT on our example

We want to prove that t is true in all interpretations in which formulas of
Σ are all true. Not the same problem. . .

Let us look at how you can prove t from Σ.

L`eˇt ˚u¯s ¯sfi˚u¯p¯p`oşfi`e ˚t‚h`a˚t J´o˝h‹nffl ˛h`a¯s ”n`o˘t ˚t´a˛k`e›nffl ˚t‚h`e ˚tˇr`a˚i‹nffl.
Aṡ J´o˝h‹nffl ˛h`a¯s ˚t´a˛k`e›nffl ˚t‚h`e ˚tˇr`a˚i‹nffl `o˘rffl ˚t‚h`e ˜b˘u¯s, ˚i˚t ”m˚u¯sfi˚t ˜bfle ˚t‚h`e `c´a¯sfi`e
˚t‚h`a˚t J´o˝h‹nffl ˛h`a¯s ˚t´a˛k`e›nffl ˚t‚h`e ˜b˘u¯s.
I˜f ˛h`e ˛h`a¯s ˚t´a˛k`e›nffl ˚t‚h`e ˜b˘u¯s, ˚t‚h`e›nffl ˛h`e ˛h`a¯s ˜bfle´e›nffl ˜l´a˚t´e. T‚h˚u¯s J´o˝h‹nffl ˛h`a¯s
˜bfle´e›nffl ˜l´a˚t´e.
B˚u˚t ˛h`e ˛h`a¯s ”n`o˘t ˜bfle´e›nffl ˜l´a˚t´e, ˚t‚h˚u¯s ˚t‚h`eˇr`e ˚i¯s `affl `c´o“n˚tˇr`a`d˚i`cˇtˇi`o“nffl.
T‚h`eˇr`e¨f´o˘r`e J´o˝h‹nffl ˛h`a¯s ˚t´a˛k`e›nffl ˚t‚h`e ˚tˇr`a˚i‹nffl.
Q.E.D. Bingo!

Christophe Garion IN112 IN112 Mathematical Logic 38/ 382

Back to our SAT problem

We can use the “proof by contradiction” principle with our SAT solver. Let
us consider the set

{b ∨ t, b ∨ c → l ∧m,¬l , ¬t }

and ask MiniSat if it can find an interpretation for those formulas.

john.sat

p cnf 5 7
1 5 0
-1 3 0
-1 4 0
-2 3 0
-2 4 0
-3 0
-5 0

And the answer is. . . UNSATISFIABLE!

Christophe Garion IN112 IN112 Mathematical Logic 39/ 382

Now, let’s do the “real” proof

Using SAT and model theory, we know that the argument is correct. But
can we write a proof that can be accepted as correct by our beloved
teacher?

Unfortunately, in most case proof finding is not “mechanical” (otherwise,
math. teachers will be unemployed).

But fortunately, in the propositional case, there are systems that can
handle the proof, e.g. Gentzen formal system we will see in the lecture.

Unfortunately (again), the form of the proof is not the one you will write
by hand.

But if you write the proof in one of those system, a machine can check
that your proof is correct!

Christophe Garion IN112 IN112 Mathematical Logic 40/ 382

Building and verifying the proof

To verify and build a proof, you can use an interactive theorem prover
like Coq to prove the theorem.

INRIA (2013a).
The Coq proof assistant.
http://coq.inria.fr/.

Coq allows you to write proofs using tactics and when the proof is
established it can be verified. You “just have” to trust the Coq kernel.

http://coq.inria.fr/

Building and verifying the proof

john.v

Variable T : Prop.
Variable B : Prop.
Variable C : Prop.
Variable L : Prop.
Variable M : Prop.

Proposition john_train : (B \/ T) /\ (B \/ C -> L /\ M) /\ (~ L) -> T.
Proof.
intro Hyp_gen.
destruct Hyp_gen as [Hbus_or_train H1].
destruct H1 as [Hbus_or_car_implies Hnot_late].
destruct Hbus_or_train as [Hbus | Htrain].

destruct Hbus_or_car_implies as [Hlate Hmiss].
left. exact Hbus.
absurd L.
exact Hnot_late.
exact Hlate.

exact Htrain.
Qed.

Nice, isn’t it?

An automatic proof!

Question: is there an algorithm to prove that there is a proof of our
assertion?

This field of study is called automated theorem proving and is strongly
related to SAT. Some theorem provers:

The E Theorem Prover (http://www.eprover.org)
Vampire (http://www.vprover.org)
SPASS (http://www.spass-prover.org)

http://www.eprover.org
http://www.vprover.org
http://www.spass-prover.org

An automatic proof!

Let us try SPASS on our problem.

The SPASS team (2014).
SPASS: An Automated Theorem Prover for First-Order
Logic with Equality.
http://www.spass-prover.org.

http://www.spass-prover.org

An automatic proof!

Let us try SPASS on our problem.

john.spass

begin_problem(john_train).

list_of_descriptions.
name({*The %!?## problem of John and his train*}).
author({*Christophe Garion*}).
status(satisfiable).
description({*Prove (B \/ T) /\ (B \/ C -> L /\ M) /\ (~ L) -> T...*}).

end_of_list.

list_of_symbols.
predicates[(B,0), (C,0), (L,0), (M,0), (T,0)].

end_of_list.

list_of_formulae(conjectures).
formula(implies(and(and(or(B, T), implies(or(B, C), and(L, M))),

not(L)), T)).
end_of_list.

end_problem.

A last remark: formal logic?

The proof we have done here is a formal proof, i.e. it does not depend on
the “natural language semantics” of the initial sentences.
For instance, you will can reuse exactly the same proof for the following
argument:

John has drunk orange juice or tequila at the party. If he has
drunk tequila or whiskey at the party, he has missed the logic
lecture and he has lost his ID card. He has not missed the logic
lecture. Therefore John has drunk orange juice at the party.

Christophe Garion IN112 IN112 Mathematical Logic 43/ 382

Argument: a second example

Let us consider the following argument:

Let G = {E ,×} be a group. If each element x of the group is its
own inverse, then G is commutative.

Let us try to model it with propositional logic:

Σ =

{
g , (G is a group)
i (inverse property)

}
ϕ ≡ com (commutativity property)

Christophe Garion IN112 IN112 Mathematical Logic 44/ 382

Argument: a second example

Let us consider the following argument:

Let G = {E ,×} be a group. If each element x of the group is its
own inverse, then G is commutative.

OK, maybe it is because there are implicit hypotheses:

Σ =

c , (closure of G)
a, (associativity of ×)
id , (identity)
in, (invertibility)
i (inverse property)

ϕ ≡ com (commutativity property)

But we cannot prove this in propositional logic, as there is no link between
the variables!

Christophe Garion IN112 IN112 Mathematical Logic 44/ 382

A more expressive language

In fact, we need a more expressive language. For instance, in “classical”
maths, you will express the closure property as follows:

∀(x , y) ∈ E 2, x × y ∈ E

You need quantifiers (∀, ∃), predicates representing properties (x
belongs to E , equality, . . .).

This is in fact First-Order Logic (First-Order as we can quantify on
variables).

Christophe Garion IN112 IN112 Mathematical Logic 45/ 382

A more expressive language

In fact, we need a more expressive language. For instance, in “classical”
maths, you will express the closure property as follows:

∀(x , y) ∈ E 2, x × y ∈ E

The formalization of the argument in FOL is the following:

Σ =

∀x∀y E (x) ∧ E (y)→ E (x × y)
∀x∀y∀z E (x) ∧ E (y) ∧ E (y)→ x × (y × z) = (x × y)× z
∃e E (e) ∧ (∀x E (x)→ (x × e = e) ∧ (e × x = e))
∀x E (x)→ (∃y∃z E (y) ∧ E (z) ∧ x × y = e ∧ z × x = e)
∀x E (x)→ x × x = e

ϕ ≡ ∀x∀y E (x) ∧ E (y)→ x × y = y × x

Notice that we will not use “typed” logic, thus we cannot use the ∈ symbol
and use a E predicate to represent it.
Notice also that you have to define laws for equality. . .

Christophe Garion IN112 IN112 Mathematical Logic 45/ 382

Model theory on our example

We cannot use SAT solvers on our argument as we have quantifiers and
predicates. But we can try using a SMT solver to verify if the argument is
correct.

Definition (informal)
A Satisfiability Modulo Theory (SMT) problem is a decision problem
based on SAT where the interpretation of some symbols is constrained
by a background theory.

Model theory on our example

We cannot use SAT solvers on our argument as we have quantifiers and
predicates. But we can try using a SMT solver to verify if the argument is
correct.

Barrett, Clark et al. (2009).
“Satisfiability Modulo Theories”.
In:
Handbook of Satisfiability.
Ed. by Armin Biere et al.
Vol. 185.
Frontiers in Artificial Intelligence and Applications.
IOS Press.
Chap. 26, pp. 825–885.
ISBN: 978-1-58603-929-5.

Model theory on our example

We cannot use SAT solvers on our argument as we have quantifiers and
predicates. But we can try using a SMT solver to verify if the argument is
correct.

Let us try with the Alt-Ergo SMT solver.

Conchon, Sylvain and Evelyne Contejean (2013).
Alt-Ergo, an OCaml SMT-solver for software verification.
http://alt-ergo.lri.fr/.

http://alt-ergo.lri.fr/

Model theory on our example

We cannot use SAT solvers on our argument as we have quantifiers and
predicates. But we can try using a SMT solver to verify if the argument is
correct.

group.mlw

type E

logic times: E, E -> E
logic e: E
logic inv: E -> E

axiom neutral: forall x:E. times(x, e) = e and times(e, x) = e
axiom associativity:

forall x,y,z:E. times(x, times(y, z)) = times(times(x, y), z)
axiom inverse:

forall x:E. (times(x, inv(x)) = e) and (times(inv(x), x) = e)
axiom own_inverse: forall x:E. inv(x) = x

goal commutativity: forall x,y:E. times(x, y) = times(y, x)

And the answer is. . .

Our theorem: not provable by a computer?

We cannot use a SMT automated prover to prove our theorem, but we can
use an interactive theorem prover like Coq to prove the theorem.

We will not use Coq during the lecture and only present automatic
reasoning, but you can check the following reference.

Johanssons, Mikael (2007).
Coq and simple group theory.
http://blog.mikael.johanssons.org/archive/2007/08/
coq-and-simple-group-theory/.

Christophe Garion IN112 IN112 Mathematical Logic 47/ 382

http://blog.mikael.johanssons.org/archive/2007/08/coq-and-simple-group-theory/
http://blog.mikael.johanssons.org/archive/2007/08/coq-and-simple-group-theory/

An automatic proof, again with SPASS!

group.spass (not complete!)

begin_problem(group).

list_of_descriptions.
name({*The problem of group inverses*}).
author({*Christophe Garion*}).
status(satisfiable).
description({*Prove that a group such that every element of the group

is its own inverse is commutative...*}).
end_of_list.

list_of_symbols.
functions[(e,0), (times,2), (inv,1)].
sorts[E].

end_of_list.

list_of_formulae(axioms).
formula(forall([E(x), E(y)], E(times(x, y)))).
formula(forall([E(x), E(y), E(z)], equal(times(x, times(y, z)),

times(times(x, y), z)))).

Christophe Garion IN112 IN112 Mathematical Logic 48/ 382

So, can we prove difficult theorems using logic?

Theorem (four color)
Given any separation of plan intro contiguous regions (a figure called a
map), no more than four colors are required to color the regions of the
map so that no two adjacent regions have the same color.

The first theorem to be proved using a computer in 1986 by Appel and
Hakken: 1200 hours of calculation!

Appel, K. and W. Haken (1989).
“Every planar map is four colourable”.
In: Contemporary Mathematics 98.

Not accepted by some mathematicians: no human can verify the proof by
hand. . .

Christophe Garion IN112 IN112 Mathematical Logic 49/ 382

So, can we prove difficult theorems using logic?

Theorem (four color)
Given any separation of plan intro contiguous regions (a figure called a
map), no more than four colors are required to color the regions of the
map so that no two adjacent regions have the same color.

. . . but an accepted proof has been formalized by Georges Gonthier and
Benjamin Werner in 2005 in Coq.

Gonthier, Georges (2008).
“Formal proof – the four-color theorem”.
In: Notices of the American Mathematical Society 55.11.

Christophe Garion IN112 IN112 Mathematical Logic 49/ 382

Another theorem verified by Coq

The Feit-Thompson theorem is a complicated theorem about groups. Its
original proof is a book of 250 pages!

Even if mathematicians are strongly confident in the validity of the proof,
how can a human check that there is no error?

Again, Georges Gonthier and his team have proven the theorem in Coq in
2012 (see have http://www.msr-inria.fr/news/
the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012/):

6 years of work
170000 lines of code
4200 definitions
15000 theorems

Christophe Garion IN112 IN112 Mathematical Logic 50/ 382

http://www.msr-inria.fr/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012/
http://www.msr-inria.fr/news/the-formalization-of-the-odd-order-theorem-has-been-completed-the-20-septembre-2012/

Outline of part 1 - Introduction

1 History of logic

2 A first guided tour on mathematical logic
Model theory vs. proof theory
Some examples and what can be done
Some computational aspects
Mathematical logic for Computer Science

3 A short bibliography

4 Agenda

Christophe Garion IN112 IN112 Mathematical Logic 51/ 382

Decision problem

Automated reasoning: find algorithms which allow to verify if a statement
can be deduced from premises.

We will show that this question can be reduced to the problem of verifying
the validity of a formula, i.e. find if a formula is always true.

The problem is thus to be able to verify if a given formula is in the set of
valid formulas.

Definition (decision problem)
A decision problem is a question on a formal system whose possible
answers are yes and no.

Consequence
The problem of finding if an element is in a set or not is a decision
problem.

Christophe Garion IN112 IN112 Mathematical Logic 52/ 382

yes

Decidability

Definition (decidability)
A decision problem is decidable iff there is an algorithm which can
anwser the decision problem in a finite number of steps.

Definition (semidecidability)
A decision problem is semidecidable iff there is an algorithm which:

halts and returns yes if the answer to the problem is yes
halts and returns no or never halts if the answer to the problem
is no

Christophe Garion IN112 IN112 Mathematical Logic 53/ 382

And for our logic languages?

Theorem (decidability of propositional logic)
The problem of finding if a propositional formula is valid or not is
decidable.

Theorem (semidecidability of first-order logic)
The problem of finding if a first-order logic formula is valid or not is
semidecidable.

Christophe Garion IN112 IN112 Mathematical Logic 54/ 382

Decidability: some examples .

Let us consider the following sets:

- arithmetics expressions
- the valid formulas in the FO theory of the
integers with =, +

- the valid formulas in the FO theory of the
integers with =, +, ×

- the valid formulas in the FO theory of the
real closed fields

- the valid formulas in the FO theory of the
groups

Which ones are decidable?

Christophe Garion IN112 IN112 Mathematical Logic 55/ 382

Decidability: some examples .

Let us consider the following sets:

- arithmetics expressions 4 (trivial)
- the valid formulas in the FO theory of the
integers with =, +

4 (Pressburger)

- the valid formulas in the FO theory of the
integers with =, +, ×

8 (Tarski)

- the valid formulas in the FO theory of the
real closed fields

4 (Tarski)

- the valid formulas in the FO theory of the
groups

8 (Tarski)

Which ones are decidable?

Christophe Garion IN112 IN112 Mathematical Logic 55/ 382

Outline of part 1 - Introduction

1 History of logic

2 A first guided tour on mathematical logic
Model theory vs. proof theory
Some examples and what can be done
Some computational aspects
Mathematical logic for Computer Science

3 A short bibliography

4 Agenda

Christophe Garion IN112 IN112 Mathematical Logic 56/ 382

Mathematical logic for Computer Science?

Foundations of Computer Science:

links between lambda-calculus and proofs (Curry-Howard theorem)
algorithms and problems complexity

Programming languages:

formal semantics, type theory
logic programming, relational algebra and SQL

Software engineering:

formal specifications
verification and validation

Artificial intelligence:

automatic deduction
modelling of notions such as belief, knowledge, intention,. . .

Christophe Garion IN112 IN112 Mathematical Logic 57/ 382

Mathematical logic in CS: example

Exercise
Prove that the following C program is correct.

foo.c

void foo(int *a, int *b) {
int tmp = *a ;

*a = *b ;

*b = tmp ;
return ;

}

Questions

what is correctness for computer programs?
is there a logic for programs?

Christophe Garion IN112 IN112 Mathematical Logic 58/ 382

Mathematical logic in CS: example

Exercise
Prove that the following C program is correct.

foo.c

void foo(int *a, int *b) {
int tmp = *a ;

*a = *b ;

*b = tmp ;
return ;

}

Hoare, C. A. R. (1969).
“An axiomatic basis for computer programming”.
In: Communications of the ACM 12.10,
Pp. 576–580.

Christophe Garion IN112 IN112 Mathematical Logic 58/ 382

Mathematical logic in CS: example

OK, so you have proved your C program using Floyd-Hoare logic and its
extensions. . .
. . . but how can you be sure that your favorite compiler (gcc) will produce
an executable file with the same semantics? /

INRIA (2013b).
CompCert.
http://compcert.inria.fr/.

Proven using the Coq proof assistant.

Christophe Garion IN112 IN112 Mathematical Logic 59/ 382

http://compcert.inria.fr/

Are those methods really useful?

Gouw, Stijn de (2015).
Proving that Android’s, Java’s and Python’s sorting algo-
rithm is broken (and showing how to fix it).
http://envisage-project.eu/proving-android-java-and-
python-sorting-algorithm-is-broken-and-how-to-fix-
it/.

When trying to prove TimSort, the authors found an important bug.
In practise, there are small “chances” to have a dataset conforming to the
bug, but the bug can be exploited in an attack.

Christophe Garion IN112 IN112 Mathematical Logic 60/ 382

http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/
http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/
http://envisage-project.eu/proving-android-java-and-python-sorting-algorithm-is-broken-and-how-to-fix-it/

Outline of part 1 - Introduction

1 History of logic

2 A first guided tour on mathematical logic

3 A short bibliography

4 Agenda

Christophe Garion IN112 IN112 Mathematical Logic 61/ 382

References

Huth, Michael and Mark Ryan (2004).
Logic in Computer Science – Modelling and reasoning about
systems.
Cambridge University Press.

Kleene, Stephen Cole (1967).
Mathematical logic.
Dover Publications.

Chang, Chin-Liang and Richard Char-Tung Lee (1973).
Symbolic logic and mechanical theorem proving.
Academic Press.

Cerrito, Serenella (2008).
Logique pour l’informatique – Introduction à la déduction
automatique.
In French.
Vuibert.

Christophe Garion IN112 IN112 Mathematical Logic 62/ 382

Outline of part 1 - Introduction

1 History of logic

2 A first guided tour on mathematical logic

3 A short bibliography

4 Agenda

Christophe Garion IN112 IN112 Mathematical Logic 63/ 382

Objectives of the course

Objective 1
Understand mathematical logic as a tool for verifying validity of argu-
ments.
Understand both model and proof theories.

Objective 2
Present applications for mathematical logic: program verification, formal
number theory etc.

Objective 3
Discover a new programming paradigm, logic programming.

Objective 4
Have fun with maths ,

Christophe Garion IN112 IN112 Mathematical Logic 64/ 382

Agenda and evaluation

1 introduction - general concepts CG
2-3 propositional logic semantics CG
4-5 formal systems for PL CG
6 resolution strategies for PL CG

7-8 FOL language and semantics CG
9-10 formal systems for FOL CG
11 formal number theory CG

program verification
12 logic programming CG
13 lab session on Prolog CG

14-15 mini-project on Prolog CG
16 exam

Evaluation: 1h15 exam (75%) + mini-project (25%)

All material are available on
http://www.tofgarion.net/lectures/IN112

Christophe Garion IN112 IN112 Mathematical Logic 65/ 382

http://www.tofgarion.net/lectures/IN112

Outline of part 2 - PL language and semantics

2 - Propositional logic language and
semantics

5 Propositional language LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity

Christophe Garion IN112 IN112 Mathematical Logic 66/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

Defining a formal language
Alphabet of LPL

Definition of LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity

Christophe Garion IN112 IN112 Mathematical Logic 67/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

Defining a formal language
Alphabet of LPL

Definition of LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity

Christophe Garion IN112 IN112 Mathematical Logic 68/ 382

How to define a formal language?

We want to define formally formulas of LPL, but we have to define
formulas using formulas.

For instance, if ϕ and ψ are formulas, then ϕ ∧ ψ is a formula.

In mathematics, in such case we use an inductive definition.

Definition (inductive or recursive definition)
An inductive definition of a set E is composed of:

a base case of the definition which defines elementary elements
of E
an inductive clause of the definition which defines elements of E
using other elements of E defined with a finite number of steps
n and operations
an extremal clause that says that E is the smallest set built
using the base case and the inductive clause.

Christophe Garion IN112 IN112 Mathematical Logic 69/ 382

Some definitions by induction .

Exercise
Define N by induction.

Exercise
Define binary trees by induction.

Christophe Garion IN112 IN112 Mathematical Logic 70/ 382

Structural induction

Given a set E defined inductively, we can prove properties on elements of
E using structural induction.

Definition (structural induction)
Let E be a set defined inductively and P a property on elements of E
to be proved. If:

P can be proved to be true on each base case
if we suppose that P is true on elements built with n steps then
P is true on elements that can be built with n + 1 steps

then P is true for every element of E .

Christophe Garion IN112 IN112 Mathematical Logic 71/ 382

A proof by strucural induction .

Exercise
Prove the following property of binary trees: “the number n of nodes
in a binary tree of height h is at least n = h and at most n = 2h − 1
where h is the depth of the tree”.

Christophe Garion IN112 IN112 Mathematical Logic 72/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

Defining a formal language
Alphabet of LPL

Definition of LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity

Christophe Garion IN112 IN112 Mathematical Logic 73/ 382

Alphabet

The language of propositional logic is denoted here by LPL.

As for every language, we must first define an alphabet for LPL.

Christophe Garion IN112 IN112 Mathematical Logic 74/ 382

Alphabet

The language of propositional logic is denoted here by LPL.

Definition (alphabet of LPL)
The alphabet of LPL is composed of:

an infinite and enumerable set of propositional variables noted
Var = {p, q, r , . . .}
logical connectors:

meaning arity
> top/true 0
⊥ bottom/false 0
¬ negation 1
∨ or/disjunction 2
∧ and/conjunction 2
→ implication 2
↔ logical equivalence 2

parentheses ()

Christophe Garion IN112 IN112 Mathematical Logic 74/ 382

Signature of a propositional language

In the alphabet, >, ⊥, ¬, ∨, →, ↔, (and) are called logical symbols
because their logical meaning is already defined.

On the contrary, Var depends on the problem to be modelled and thus the
propositional variables are called non-logical symbols. It is also called
the signature of the language.

So, when you want to model a problem using LPL, you first have to define
the signature of your language, i.e. the propositional variables you will use.

Christophe Garion IN112 IN112 Mathematical Logic 75/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

Defining a formal language
Alphabet of LPL

Definition of LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity

Christophe Garion IN112 IN112 Mathematical Logic 76/ 382

Definition of LPL

LPL is defined inductively with well formed formulas (wffs).

Definition (well formed formulas)

if p is a propositional variable, then p is a wff. p is an atomic
formula or atom.
> and ⊥ are wff.
if ϕ is a wff, alors (¬ϕ) is a wff.
if ϕ and ψ are wff, then (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ→ ψ) and (ϕ↔ ψ)
are wff.

Christophe Garion IN112 IN112 Mathematical Logic 77/ 382

Modelling exercise .

Exercise
Use propositional language to model the following declarative sentences.

1 it is raining and it is cold.
2 if he eats too much, he will be sick.
3 it is sunny but it is cold.
4 if it is cold, I take my jacket.
5 I take either a jacket, either an umbrella.
6 it is not raining.
7 in autumn, if it is cold then I take a jacket.
8 in winter, I take a jacket only if it is cold.
9 if Peter does not forget to book tickets, we will go to theater.
10 if Peter does not forget to book tickets and if we find a baby-sitter, we will go

to theater.
11 he went, although it was very hot, but he forgot his water bottle.
12 when I am nervous, I practise yoga or relaxation. Someone practising yoga

also practises relaxation. So when I do not practise relaxation, I am calm.
13 my sister wants a black and white cat.

Syntax tree of PL wff

Every wff can be represented by a syntax tree, which is a finite binary
tree.

Definition (syntax tree)
Let ϕ be a wff. The syntax tree of ϕ is defined inductively as follows:

if ϕ is an atomic formula, then ST (ϕ) = 〈∅, ϕ, ∅〉
if ϕ ≡ ¬ϕ1, then ST (ϕ) = 〈ST (ϕ1),¬, ∅〉
if ϕ ≡ ϕ1 ∗ ϕ2 where ∗ is a binary connector, then
ST (ϕ) = 〈ST (ϕ1), ∗,ST (ϕ2)〉

Example for ((a ∧ b)→ (c ∨ ¬d)):

The main connector:
→

The tree structure is determined
by parenthesis in the wff.

→

∧

a b

∨

c ¬

d

Some conventions

To simplify the writing, some conventions can be used:
removing of external parentheses: (a ∧ b) ; a ∧ b

¬ is written without parentheses: (¬a) ; ¬a
connectors are associative from left to right: ((a∧ b)∧ c) ; a∧ b ∧ c

Connectors can be ordered by growing priority:

↔ → ∨ ∧ ¬

For instance, we will write p ∧ q → r ∨ s instead of (p ∧ q)→ (r ∨ s).

Christophe Garion IN112 IN112 Mathematical Logic 80/ 382

Some definitions for later

Definition (literal)

if p ∈ Var then p is a literal
if p ∈ Var then ¬p is a literal

Definition (subformulas)
The subformulas set of ϕ denoted by sf (ϕ) is defined inductively as
follows:

if ϕ is an atomic formula p, then sf (ϕ) = {p}
sf (¬ϕ) = {¬ϕ} ∪ sf (ϕ)

if conn is a binary connector,
sf (ϕ1 conn ϕ2) = {ϕ1 conn ϕ2} ∪ sf (ϕ1) ∪ sf (ϕ2)

Notice that in PL, the number of subformulas of a wff ϕ is finite.

Christophe Garion IN112 IN112 Mathematical Logic 81/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics
Boolean functions
Interpretations
Satisfiability and logical consequence
Useful lemmas and theorems

7 Technics and algorithms for validity

Christophe Garion IN112 IN112 Mathematical Logic 82/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics
Boolean functions
Interpretations
Satisfiability and logical consequence
Useful lemmas and theorems

7 Technics and algorithms for validity

Christophe Garion IN112 IN112 Mathematical Logic 83/ 382

Boolean functions

Let B be the set {T ,F}.

Definition (boolean function)
A boolean function with n variables is a function
f : Bn → B.

The unary boolean function f¬ is defined as follows:

f¬(T) = F

f¬(F) = T

The binary boolean function f∨ is defined as follows:

f∨(T ,T) = T

f∨(F ,T) = T

f∨(T ,F) = T

f∨(F ,F) = F

Christophe Garion IN112 IN112 Mathematical Logic 84/ 382

Boolean functions

The binary boolean function f∧ is defined as follows:
f∧(T ,T) = T

f∧(F ,T) = F

f∧(T ,F) = F

f∧(F ,F) = F

The binary boolean function f→ is defined as follows:
f→(T ,T) = T

f→(F ,T) = T

f→(T ,F) = F

f→(F ,F) = T

The binary boolean function f↔ is defined as follows:
f↔(T ,T) = T

f↔(F ,T) = F

f↔(T ,F) = F

f↔(F ,F) = T

Christophe Garion IN112 IN112 Mathematical Logic 85/ 382

Minimal connectors set

There are in fact 16 boolean functions corresponding to connectors and
some of them are related.

For instance, you can see that f→(x , y) = f∨(f¬(x), y), i.e. that a→ b is
logically equivalent to ¬a ∨ b.

Thus, we can define boolean functions only for a minimal connectors set
and define the other connectors from them.

For instance, the following sets are minimal for classical propositional logic:

{¬,∨}, {→,⊥}, {↑}, {∧,↔,⊥}, . . .

{¬,∨} and {→,⊥} are often chosen.

Christophe Garion IN112 IN112 Mathematical Logic 86/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics
Boolean functions
Interpretations
Satisfiability and logical consequence
Useful lemmas and theorems

7 Technics and algorithms for validity

Christophe Garion IN112 IN112 Mathematical Logic 87/ 382

Interpretation and truth value

Definition (propositional interpretation)
An interpretation for a set of propositional variables Var is an always
defined function I : Var→ {T ,F}.

Definition (truth value)
The truth value of a wff ϕ under an interpretation I, denoted by [[ϕ]]I
is defined by:

[[p]]I = I(p) iff p ∈ Var
[[>]]I = T and [[⊥]]I = F

[[¬ϕ]]I = f¬([[ϕ]]I)

[[ϕ ∨ ψ]]I = f∨([[ϕ]]I , [[ψ]]I)

[[ϕ ∧ ψ]]I = f∧([[ϕ]]I , [[ψ]]I)

[[ϕ→ ψ]]I = f→([[ϕ]]I , [[ψ]]I)

[[ϕ↔ ψ]]I = f↔([[ϕ]]I , [[ψ]]I)

Christophe Garion IN112 IN112 Mathematical Logic 88/ 382

Interpretation: example

Let p be a propositional variable representing the statement “John is
physically attending the lecture”.

Let i be a propositional variable representing the statement “John is
intellectually attending the lecture”.

1 10/11/13 at 16:00, I notice that John is here and is asking interesting
questions.

I1 : p 7→ T
i 7→ T

[[p ∧ i]]I1 = T

2 10/15/13 at 08:00, I notice that John is here and is sleeping.

I2 : p 7→ T
i 7→ F

[[p ∧ i]]I2 = F

Christophe Garion IN112 IN112 Mathematical Logic 89/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics
Boolean functions
Interpretations
Satisfiability and logical consequence
Useful lemmas and theorems

7 Technics and algorithms for validity

Christophe Garion IN112 IN112 Mathematical Logic 90/ 382

Satisfiability: definitions

Definition (satisfiability)
An intepretation I satisfies a wff ϕ iff [[ϕ]]I = T .

I is said to be a model of ϕ denoted by note |=I ϕ.

Let Σ be a set of propositional formulas. I is a model of Σ iff I is a
model for each formula in Σ.

a wff ϕ is satisfiable iff there is an interpretation I such that |=I ϕ.
a wff ϕ is a tautology iff for every interpretation I, |=I ϕ.
ϕ is also said to be valid.
This is noted |= ϕ.
a wff ϕ is an antilogy or contradiction iff for every interpretation I,
6|=I ϕ (i.e. [[ϕ]]I = F).
a wff ϕ is neutral iff it is neither a tautology nor an antilogy.

Christophe Garion IN112 IN112 Mathematical Logic 91/ 382

Some tautologies. . .

|= a→ (b → a)
|= (a→ (b → c))→ ((a→ b)→ (a→ c))
|= (¬b → ¬a)→ ((¬b → a)→ b)
|= a→ a
|= ¬a→ (a→ b)
|= ¬¬a→ a
|= (a→ ¬b)→ (b → ¬a)
|= (a→ b)→ (¬b → ¬a)
|= (a ∧ b)→ a
|= a→ (a ∨ b)

Christophe Garion IN112 IN112 Mathematical Logic 92/ 382

Logical consequence

Definition (logical consequence)
Let ϕ and ψ be two wffs. ψ is a logical consequence of ϕ, denoted
by ϕ |= ψ, iff for every interpretation I such that [[ϕ]]I = T , then
[[ψ]]I = T .

Definition (logical consequence of a set)
Let n ∈ N∗, Σ = {ϕ1, . . . , ϕn} be a set of wffs and ψ be a wff. ψ is
a logical consequence of Σ iff for every interpretation I such that
[[ϕ1 ∧ . . . ∧ ϕn]]I = T , then [[ψ]]I = T .

This noted Σ |= ϕ.

Christophe Garion IN112 IN112 Mathematical Logic 93/ 382

Logical consequence

N.B. (important)
Verifying that “from Σ we can deduce ϕ” is proving Σ |= ϕ in model
theory!

Christophe Garion IN112 IN112 Mathematical Logic 93/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics
Boolean functions
Interpretations
Satisfiability and logical consequence
Useful lemmas and theorems

7 Technics and algorithms for validity

Christophe Garion IN112 IN112 Mathematical Logic 94/ 382

Replacement theorem

Theorem (replacement)
Let ϕ be a wff written with the variables p1, . . . , pn. Let ϕ′ be the wff
obtained by replacing variables p1, . . . , pn in ϕ by the wffs ϕ1, . . . , ϕn.
Then |= ϕ ⇒ |= ϕ′.

Example: |= p ∨ ¬p implies |= ((p ∧ q)→ r) ∨ ¬((p ∧ q)→ r)

Consequence
This allows us to generate an infinite set of tautologies from the previous
ones. . .

Christophe Garion IN112 IN112 Mathematical Logic 95/ 382

Substitution theorem

Definition (substitution)
Let ψ be a subformula of a wff ϕ. Let ψ′ be a wff. Then ϕ[ψ/ψ′]
denotes the formula obtained by replacing the occurrences of ψ in ϕ by
ψ′.

Theorem (substitution)
Le ψ be a subformula of a wff ϕ. Let ψ′ be a formula. If |= ψ ↔ ψ′,
then |= ϕ↔ ϕ[ψ/ψ′].

Thus logical equivalence preserves validity.

Christophe Garion IN112 IN112 Mathematical Logic 96/ 382

Lemmas

Lemma (monotonicity of |= for PL)
If Σ |= ψ, then for every wff ϕ Σ ∪ {ϕ} |= ψ.

Lemma
If |= ϕ, then for every set of wffs Σ Σ |= ϕ.

Lemma (ex falso quodlibet)
ψ is a contradiction iff for every wff ϕ, ψ |= ϕ.

Lemma (important for Resolution principle!)
If Σ |= ϕ, then Σ ∪ {¬ϕ} is a contradiction.

Christophe Garion IN112 IN112 Mathematical Logic 97/ 382

Compactness of propositional logic

Theorem (compactness of PL)
Let Σ be a (possibly infinite) set of wffs. Then Σ is satisfiable iff every
finite subset of Σ is satisfiable.

This is useful if you want to prove that a set Σ is unsatisfiable: it is
sufficient to find a finite subset of Σ that is unsatisfiable.

We will use this theorem with the Resolution formal system.

Christophe Garion IN112 IN112 Mathematical Logic 98/ 382

Deduction theorem

Theorem (deduction)
ϕ |= ψ iff |= ϕ→ ψ
ϕ1, . . . , ϕn |= ψ iff ϕ1, . . . , ϕn−1 |= ϕn → ψ

N.B.
This theorem is important: it allows to transform the “validity of an
argument” problem to the “validity of a formula” problem.
Verifying that “from {ϕ1, . . . , ϕn} we can deduce ψ” is proving |= ϕ1 →
(. (ϕn → ψ) . . .).

Christophe Garion IN112 IN112 Mathematical Logic 99/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity
Evaluating formulas
Truth tables
Equivalent formulas
Conjunctive normal forms
The Davis-Putnam algorithm
The SAT problem

Christophe Garion IN112 IN112 Mathematical Logic 100/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity
Evaluating formulas
Truth tables
Equivalent formulas
Conjunctive normal forms
The Davis-Putnam algorithm
The SAT problem

Christophe Garion IN112 IN112 Mathematical Logic 101/ 382

Formula evaluation using syntax tree

When evaluating a formula in an interpretation I, you can apply strategies
to prune the evaluation tree.
For instance, if the first parameter of f∧ is F , then it is not necessary to
evaluate the second parameter: the result is F .

For instance, compute [[a ∧ b → c ∨ ¬d]]I in an interpretation I s.t.
I(a) = F .

→

∧F

a

F

b

∨

c ¬

d

unnecessary computations

Christophe Garion IN112 IN112 Mathematical Logic 102/ 382

Algorithm for evaluation: main part

Function evaluate(t, I)
Input: a formula ϕ to evaluate represented by its syntax tree

t = 〈t1, c , t2〉 and an interpretation I
Output: the boolean value T (if |=I ϕ) or F (if 6|=I ϕ)

1 if t1 = ∅ and t2 = ∅ then
2 return I(c) ;
3 end
4 switch c do
5 case ¬: return evaluateNot(t1, I) ;
6 ;
7 case ∨: return evaluateOr(t1, t2, I) ;
8 ;
9 case ∧: return evaluateAnd(t1, t2, I) ;

10 ;
11 case →: return evaluateImplies(t1, t2, I) ;
12 ;
13 case ↔: return evaluateEquiv(t1, t2, I) ;
14 ;
15 endswChristophe Garion IN112 IN112 Mathematical Logic 103/ 382

Algorithm for evaluation: ¬ and ∨

Function evaluateNot(t, I)
1 return f¬(evaluate(t, I)) ;

Function evaluateOr(t1, t2, I)
1 v1 ← evaluate(t1, I) ;
2 if v1 = T then
3 return T ;
4 else
5 return evaluate(t2, I) ;
6 end

Christophe Garion IN112 IN112 Mathematical Logic 104/ 382

Algorithm for evaluation: ∧ and →

Function evaluateAnd(t1, t2, I)
1 v1 ← evaluate(t1, I) ;
2 if v1 = F then
3 return F ;
4 else
5 return evaluate(t2, I) ;
6 end

Function evaluateImplies(t1, t2, I)
1 v1 ← evaluate(t1, I) ;
2 if v1 = F then
3 return T ;
4 else
5 return evaluate(t2, I) ;
6 end

Christophe Garion IN112 IN112 Mathematical Logic 105/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity
Evaluating formulas
Truth tables
Equivalent formulas
Conjunctive normal forms
The Davis-Putnam algorithm
The SAT problem

Christophe Garion IN112 IN112 Mathematical Logic 106/ 382

Truth table

Definition (truth table)
A truth table for a formula ϕ using {a1, . . . an} as propositional vari-
ables is a table with n + 1 columns and 2n rows, such that:

each case of the table contains the value T or the value F

each row represents a different interpretation for {a1, . . . an}.
This interpretation is represented by the values appearing in the n
first cases of the row
the last column of a row representing the interpretation I
contains the value of [[ϕ]]I .

Christophe Garion IN112 IN112 Mathematical Logic 107/ 382

Truth table: example and conclusion

Example for a ∧ b:

a b a ∧ b
F F F
F T F
T F F
T T T

So, if we want to prove the validity of ϕ, build a truth table for ϕ and
verify that the truth value of ϕ in each row is T . . .

. . . but in O(2n) where n is the number of propositional variables
appearing in ϕ!

Christophe Garion IN112 IN112 Mathematical Logic 108/ 382

Complexity of truth tables

Let us consider a language with 300 propositional variables and a wff ϕ
using those variables.

space complexity
The number of lines of a truth table for ϕ is 2300 ≈ 1090

But the number of atoms in the Universe is approximately 1080!
time complexity
Let’s use the Titan
supercomputer of the Oak
Ridge National Laboratory
(20 Pflops). . .

Supposing that Titan computes 1016 rows per seconds, it takes
1090/(1016 × 365× 24× 3600 ≈ 1066 years .

But the age of the Universe is approximately 13.7 billions years!

Christophe Garion IN112 IN112 Mathematical Logic 109/ 382

The yoga problem .

Exercise
Show that the formula representing the yoga problem is valid using
truth tables.

Christophe Garion IN112 IN112 Mathematical Logic 110/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity
Evaluating formulas
Truth tables
Equivalent formulas
Conjunctive normal forms
The Davis-Putnam algorithm
The SAT problem

Christophe Garion IN112 IN112 Mathematical Logic 111/ 382

Equivalent formulas

Definition (equivalent formulas)
Two wffs ϕ and ψ are equivalent iff for every interpretation I, [[ϕ]]I =
[[ψ]]I .

This is denoted by ϕ ≡ ψ.

Idea
If we want to prove that ϕ is a tautology, we can show that ϕ ≡ >.

Christophe Garion IN112 IN112 Mathematical Logic 112/ 382

Some equivalent formulas. . .

Definition of ↔ and →:
a↔ b ≡ (a→ b) ∧ (b → a)
a→ b ≡ ¬a ∨ b

Commutativity of ∧ and ∨:
a ∧ b ≡ b ∧ a
a ∨ b ≡ b ∨ a

Associativity of ∧ and ∨:
(a ∧ b) ∧ c ≡ a ∧ (b ∧ c)
(a ∨ b) ∨ c ≡ a ∨ (b ∨ c)

Distributivity of ∧ and ∨:
a ∨ (b ∧ c) ≡ (a ∨ b) ∧ (a ∨ c)
a ∧ (b ∨ c) ≡ (a ∧ b) ∨ (a ∧ c)

Christophe Garion IN112 IN112 Mathematical Logic 113/ 382

Some equivalent formulas. . .

Using > and ⊥:
a ∨ > ≡ >
a ∨ ⊥ ≡ a
a ∧ > ≡ a
a ∧ ⊥ ≡ ⊥
a ∨ ¬a ≡ >
a ∧ ¬a ≡ ⊥
¬¬a ≡ a

De Morgan’s laws:
¬(a ∨ b) ≡ ¬a ∧ ¬b
¬(a ∧ b) ≡ ¬a ∨ ¬b

a ∨ (¬a ∧ b) ≡ a ∨ b
a ∧ (¬a ∨ b) ≡ a ∧ b
a ∨ (a ∧ b) ≡ a
a ∧ (a ∨ b) ≡ a

Idempotency:
a ∨ a ≡ a
a ∧ a ≡ a

Christophe Garion IN112 IN112 Mathematical Logic 114/ 382

The yoga problem .

Exercise
Show that the formula representing the yoga problem is valid using
equivalent formulas.

Christophe Garion IN112 IN112 Mathematical Logic 115/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity
Evaluating formulas
Truth tables
Equivalent formulas
Conjunctive normal forms
The Davis-Putnam algorithm
The SAT problem

Christophe Garion IN112 IN112 Mathematical Logic 116/ 382

Conjunctive normal form

A particular form of equivalent formula is conjunctive normal form.

Definition (conjunctive normal form)

a literal is a propositional variable or the negation of a
propositional variable
a clause is a unordered disjunction of literals
a wff ϕ is in conjunctive normal form (CNF) iff
ϕ = ϕ1 ∧ . . . ∧ ϕn where ∀i ∈ {1, . . . , n} ϕi is a clause

Theorem (existence of a conjunctive normal form)
Every wff ϕ can be rewritten into a wff CNF (ϕ) in CNF such that ϕ
and CNF (ϕ) are logically equivalent.

Christophe Garion IN112 IN112 Mathematical Logic 117/ 382

What is so interesting about CNF?

We know that if CNF (ϕ) is valid, then ϕ is valid. Is it easy to check if
CNF (ϕ) is valid?

YES, because remember that

CNF (ϕ) ≡
n∧

i=1

ni∨
j=1

Li,j where Li,j is a literal

So, to verify that CNF (ϕ) is valid, check that in every clause of CNF (ϕ)
there are a literal and its negation.

Theorem (validity of a disjunction of literal)
A disjunction of literals 1 ∨ . . . ∨ Ln is valid iff there are 1 ≤ i < j ≤ n
s.t. Li ≡ ¬Lj .

Christophe Garion IN112 IN112 Mathematical Logic 118/ 382

How to compute a CNF

We can establish some rewritting rules to translate a formula ϕ into an
equivalent CNF.
For instance, removing implication can be achieved using the following
equivalence/rewritting rule:

ϕ→ ψ ≡ ¬ϕ ∨ ψ

and you can write other rules to perform the translation.

But we want a translation algorithm that is:

determinist (the same input will produce the same result)
efficient (in term of conjunctions number for instance)

Christophe Garion IN112 IN112 Mathematical Logic 119/ 382

Translation algorithm: the main idea

Here are the big steps of the translation algorithms (details in the next
slides):

1. eliminate all → and ↔ symbols using the following rules:

ϕ↔ ψ ≡(ϕ→ ψ) ∧ (ψ → ϕ)

ϕ→ ψ ≡¬ϕ ∨ ψ

After such a preprocessing, we will obtain a formula in which:

double negations could appear
negation could appear in front of non atomic formulas

Christophe Garion IN112 IN112 Mathematical Logic 120/ 382

Translation algorithm: the main idea

Here are the big steps of the translation algorithms (details in the next
slides):

2. translate the previously obtained formula in NNF.

Definition (negative normal form)
A wff ϕ is said to be in negative normal form (NNF) iff the
negations appearing in ϕ only concern atoms.

After such a preprocessing, we will obtain a formula

containing only ∨, ∧ and ¬ connectors
in which ¬ only concerns atoms

Christophe Garion IN112 IN112 Mathematical Logic 120/ 382

Translation algorithm: the main idea

Here are the big steps of the translation algorithms (details in the next
slides):

3. translate the previously obtained formula NNF (ϕ) in NNF to CNF
with a recursive algorithm:

if NNF (ϕ) is a literal: OK
if NNF (ϕ) = ψ1 ∧ ψ2: easy, compute the CNF of ψ1 and ψ2
and you are done
if NNF (ϕ) = ψ1 ∨ ψ2: more difficult. . .

Christophe Garion IN112 IN112 Mathematical Logic 120/ 382

The remove-imp function

Function remove-imp(ϕ)
Input: a wff ϕ
Output: a wff WI(ϕ) without → equivalent to ϕ

1 switch ϕ do
2 case ϕ is a literal: return ϕ ;
3 ;
4 case ϕ is ϕ1 ∧ ϕ2: return remove-imp(ϕ1) ∧ remove-imp(ϕ2) ;
5 ;
6 case ϕ is ϕ1 ∨ ϕ2: return remove-imp(ϕ1) ∨ remove-imp(ϕ2) ;
7 ;

8 case ϕ is ϕ1 → ϕ2: return ¬ remove-imp(ϕ1) ∨ remove-imp(ϕ2) ;;

9 endsw

Christophe Garion IN112 IN112 Mathematical Logic 121/ 382

The NNF function

Function NNF(ϕ)
Input: a wff ϕ without → symbols
Output: a wff NNF(ϕ) equivalent to ϕ in which all negations are in front

of atoms

1 switch ϕ do
2 case ϕ is a literal: return ϕ ;
3 ;
4 case ϕ is ¬¬ϕ1: return ϕ1 ;
5 ;
6 case ϕ is ϕ1 ∧ ϕ2: return NNF(ϕ1) ∧ NNF(ϕ2) ;
7 ;
8 case ϕ is ϕ1 ∨ ϕ2: return NNF(ϕ1) ∨ NNF(ϕ2) ;
9 ;

10 case ϕ is ¬(ϕ1 ∧ ϕ2): return NNF(¬ϕ1) ∨ NNF(¬ϕ2) ;
11 ;
12 case ϕ is ¬(ϕ1 ∨ ϕ2): return NNF(¬ϕ1) ∧ NNF(¬ϕ2) ;
13 ;
14 endsw

Christophe Garion IN112 IN112 Mathematical Logic 122/ 382

The CNF function

Function CNF(ϕ)
Input: a wff ϕ in NNF
Output: a wff CNF(ϕ) equivalent to ϕ in conjunctive normal form

1 switch ϕ do
2 case ϕ is a literal: return ϕ ;
3 ;
4 case ϕ is ϕ1 ∧ ϕ2: return CNF(ϕ1) ∧ CNF(ϕ2) ;
5 ;

6 case ϕ is ϕ1 ∨ ϕ2: return DISTR(CNF(ϕ1), CNF(ϕ2)) ;;

7 endsw

The disjunction case has to be held by another function.

Christophe Garion IN112 IN112 Mathematical Logic 123/ 382

The DISTR function

Function DISTR(ϕ1, ϕ2)
Input: 2 wffs ϕ1 and ϕ2 in CNF
Output: a wff DISTR(ϕ1, ϕ2) in CNF equivalent to ϕ1 ∨ ϕ2

1 switch ϕ do
2 case ϕ1 is ϕ11 ∧ ϕ12:
3 return DISTR(ϕ11, ϕ2)∧ DISTR(ϕ12, ϕ2) ;
4 end
5 case ϕ2 is ϕ21 ∧ ϕ22:
6 return DISTR(ϕ1, ϕ21)∧ DISTR(ϕ1, ϕ22) ;
7 end
8 otherwise
9 return ϕ1 ∨ ϕ2 ;

10 end
11 endsw

Christophe Garion IN112 IN112 Mathematical Logic 124/ 382

Rewritting rules used

You have the algorithms, but you can also use your brain with the
following rewritting rules obtain from equivalent formulas:

step 1 (remove impl.)

{
ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)

ϕ→ ψ ≡ ¬ϕ ∨ ψ

step 2 (NNF)

¬(¬ϕ) ≡ ϕ

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

step 3 (CNF)

{
ϕ ∨ (ψ ∧ γ) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ γ)

(ψ ∧ γ) ∨ ϕ ≡ (ψ ∨ ϕ) ∧ (γ ∨ ϕ)

Christophe Garion IN112 IN112 Mathematical Logic 125/ 382

The yoga problem .

Exercise
Show that the formula representing the yoga problem is valid by trans-
lating it into CNF.

Christophe Garion IN112 IN112 Mathematical Logic 126/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity
Evaluating formulas
Truth tables
Equivalent formulas
Conjunctive normal forms
The Davis-Putnam algorithm
The SAT problem

Christophe Garion IN112 IN112 Mathematical Logic 127/ 382

Why another algorithm?

There is a simple algorithm to verify if a CNF is valid, but it can take too
much time: for a clause with n literals, checking that there are a literal
and its negation in the clause is O(n2).

Davis and Putnam developed in 1960 a more efficient algoritm to check
the validity of a propositional formula.

Davis, Martin and Hilary Putnam (1960).
“A Computing Procedure for Quantification Theory”.
In: Journal of the ACM 7.3,
Pp. 201–215.
ISSN: 0004-5411.
DOI: 10.1145/321033.321034.
http://doi.acm.org/10.1145/321033.321034.

Christophe Garion IN112 IN112 Mathematical Logic 128/ 382

http://dx.doi.org/10.1145/321033.321034
http://doi.acm.org/10.1145/321033.321034

The main principle of the DP algorithm

The main idea of the DP algorithm is to use the fact that if ϕ is valid,
then ¬ϕ is not satisfiable. Moreover, it uses a set of clauses representing
CNF (ϕ).

Definition (set of clauses representing a formula)
Let ϕ be a wff. CL(ϕ) is the set of clauses obtained from CNF (ϕ) by
removing the conjunction connector in t(ϕ).

If CNF (ϕ) =
n∧

i=1
Ci then CL(ϕ) =

n⋃
i=1
{Ci}.

Theorem (equivalence between ϕ and CL(ϕ))
Let ϕ be a wff. ϕ is unsatisfiable iff CL(ϕ) is unsatisfiable.

Christophe Garion IN112 IN112 Mathematical Logic 129/ 382

The rules used in DP procedure

taut eliminate every tautology from S and obtain a set S ′.
S is unsatisfiable iff S ′ is.

one if there is an unit clause in S (a clause is unit if it containes only one
literal), compute S ′ by eliminating every occurrence of L in S .
If S ′ = ∅, then S is satisfiable.
Otherwise, build S ′′ by eliminating ¬L from S ′.
S is unsatisfiable iff S ′′ is.

pure a literal L is pure in S if ¬L does not appear in S . If L is pure,
obtain S ′ from S by eliminating L.
S is unsatisfiable iff S ′ is.

split if S = {A1 ∨ L, . . . ,An ∨ L,B1 ∨ ¬L,Bm ∨ ¬L,R} with L and ¬L not
appearing neither in Ai , Bj nor R, then S is unsatisfiable iff
{A1, . . . ,An,R} and {B1, . . . ,Bm,R} are.

Christophe Garion IN112 IN112 Mathematical Logic 130/ 382

Davis and Putnam procedure: example

Let us consider ϕ = p ∨ q → (¬p ∨ q → (¬q ∨ r ∨ t → (s ∨ ¬q → s))).
We have first to compute ¬ϕ and put it in CNF (easy here ,).

We apply the DP procedure:

{p ∨ q,¬p ∨ q,¬q ∨ r ∨ t, s ∨ ¬q,¬s}
{q,¬q ∨ r ∨ t, s ∨ ¬q,¬s} split with p
{r ∨ t, s,¬s} one with q
{s,¬s} pure with r and t
∅ one with s

Therefore {p ∨ q,¬p ∨ q,¬q ∨ r ∨ t, s ∨ ¬q,¬s} is unsatisfiable, thus ϕ is
valid.

We will see that the Resolution formal system has an inference rule that is
similar to the split rule.

Christophe Garion IN112 IN112 Mathematical Logic 131/ 382

Outline of part 2 - PL language and semantics

5 Propositional language LPL

6 Classical propositional logic semantics

7 Technics and algorithms for validity
Evaluating formulas
Truth tables
Equivalent formulas
Conjunctive normal forms
The Davis-Putnam algorithm
The SAT problem

Christophe Garion IN112 IN112 Mathematical Logic 132/ 382

The SAT problem

The SAT problem is the propositional satisfiability problem, i.e. the
problem of determining if a wff is satisfiable or not.

Theorem (Cook, 1971)
The SAT problem is NP-complete.

å SAT is difficult to solve, but there are instances that can be solved
efficiently

å proving that a wff is valid is Co-NP-complete!

The SAT solvers use formulas in CNF and the most widely used algorithm
is a refinement of the DP algorithm.

The SAT problem is used in various industrial problems: electronics,
verification of microprocessors, planning etc.

Christophe Garion IN112 IN112 Mathematical Logic 133/ 382

Some SAT solvers you can use

Online SAT solvers:

bool SAT http://www.boolsat.com/
MiniSat http://www.msoos.org/2013/09/minisat-in-your-browser/

Offline SAT solvers:

MiniSat http://minisat.se/
Sat4j http://www.sat4j.org/
CrypotMiniSat2 http://www.msoos.org/cryptominisat2/

Christophe Garion IN112 IN112 Mathematical Logic 134/ 382

http://www.boolsat.com/
http://www.msoos.org/2013/09/minisat-in-your-browser/
http://minisat.se/
http://www.sat4j.org/
http://www.msoos.org/cryptominisat2/

Outline of part 3 - Formal systems for propositional logic

3 - Formal systems for propositional
logic

8 Formal systems

9 Hilbert formal system for PL: H

10 Gentzen’s formal system for PL: G

11 Resolution formal system for PL: R

Christophe Garion IN112 IN112 Mathematical Logic 135/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H

10 Gentzen’s formal system for PL: G

11 Resolution formal system for PL: R

Christophe Garion IN112 IN112 Mathematical Logic 136/ 382

What is a formal system?

Definition (formal system)
A formal system is composed of two elements:

a formal language (grammar) defining a set of expressions E
a deductive system or deductive apparatus on E

Christophe Garion IN112 IN112 Mathematical Logic 137/ 382

Deductive system

Definition (deductive system)
A deduction system (or inference system) on a set E is composed
of a set of rules used to derive elements of E from other elements of E .
They are called inference rules.

If an inference rule allows to derive en+1 (conclusion) from P =
{e1, . . . , en} (premises), it will be noted as follows:

e1 e2 . . . en
en+1

When an inference rule is such that P = ∅ it is called an axiom.

If e1 is an axiom, it is either noted
e1

or simply e1.

Christophe Garion IN112 IN112 Mathematical Logic 138/ 382

Deductive system

Intuition

A rule
e1 e2
e3

means:

from e1 and e2 you can deduce e3

to prove e3, it is sufficient to prove e1 and to prove e2

Christophe Garion IN112 IN112 Mathematical Logic 138/ 382

Rules schemata

How to define an inference rule?
å it is in fact an inductive relation. . .
å for instance, the Modus Ponens inference rule (from “A” and “A

implies B” deduce “B”) has an infinite number of instances:

p p → q

q

p ∨ q p ∨ q → r ∧ t

r ∧ t
. . .

We will use rules schemata to represent infinite number of rule instances.

Definition (rule schema)
A rule schema is a notation representing all instances of an infer-
ence rule by using metavariables. We will denote metavariables with
uppercase latin letters.
A rule schema is instanciated by replacing every metavariable in the
schema by an element of E .

Christophe Garion IN112 IN112 Mathematical Logic 139/ 382

Deduction as a sequence

Definition (deduction as a sequence)
Let F be a formal system on E . A deduction of e in F from the
hypotheses H ⊂ E is a finite sequence of elements of E e1, . . . , en such
that en = e and for all i ∈ {1, . . . , n − 1}:

either ei is an instance of an axiom of F
either ei ∈ H
either ei is deduced from ej , . . . , ej+k such that j + k < i by using
an instance

ej . . . ej+k

ei

of an inference rule of F

Christophe Garion IN112 IN112 Mathematical Logic 140/ 382

Deduction as a sequence

Example on PL (“bad” formal system!):

Definition of F

A ∨ ¬A
(A1)

A A→ B

B
(MP)

Deduction of p ∨ r from q ∨ ¬q →
p ∨ r :

1 q ∨ ¬q (A1[A|q])
2 q ∨ ¬q → p ∨ r (∈ H)
3 p ∨ r (MP[A|q ∨ ¬q,B|p ∨ r])

using axiom A1 by replacing A
by q

Christophe Garion IN112 IN112 Mathematical Logic 140/ 382

Deduction as a sequence

Example on PL (“bad” formal system!):

Definition of F

A ∨ ¬A
(A1)

A A→ B

B
(MP)

Deduction of p ∨ r from q ∨ ¬q →
p ∨ r :

1 q ∨ ¬q (A1[A|q])
2 q ∨ ¬q → p ∨ r (∈ H)
3 p ∨ r (MP[A|q ∨ ¬q,B|p ∨ r])

using an hypothesis

Christophe Garion IN112 IN112 Mathematical Logic 140/ 382

Deduction as a sequence

Example on PL (“bad” formal system!):

Definition of F

A ∨ ¬A
(A1)

A A→ B

B
(MP)

Deduction of p ∨ r from q ∨ ¬q →
p ∨ r :

1 q ∨ ¬q (A1[A|q])
2 q ∨ ¬q → p ∨ r (∈ H)
3 p ∨ r (MP[A|q ∨ ¬q,B|p ∨ r])

using inference rule MP by re-
placing A by q ∨¬q and B by
p ∨ r

Christophe Garion IN112 IN112 Mathematical Logic 140/ 382

Deduction as a sequence: the classical way

Deduction as a sequence is in fact what you are doing when writing a
proof in maths.

Let G = {E ,×} be a group. Prove that if each element x of the group is
its own inverse, then G is commutative.

x × (y × (x−1 × y−1)) = x × (y × (x × y)) hyp. + rules
= (x × y)× (x × y) hyp. + rules
= e hyp. + rules

and then multiply both sides by y × x using again hypotheses and rules.

Christophe Garion IN112 IN112 Mathematical Logic 141/ 382

Deduction as a tree

Definition (deduction as a tree)
Let F be a formal system on E . The set TD(H,F) of deduction trees
from H in F is defined inductively as follows:

a tree with only one node such that this node is an instance of an
axiom of F or an element of H is an element of TD(H,F)

if t1, . . . , tn are elements of TD(H,F) such that for every i in
{1, . . . , n} the root of ti is an element ei of E and

e1 . . . en
en+1

is an instance of a rule of F , then the tree whose root is en+1 and
whose subtrees of en+1 are t1, . . . , tn is an element of TD(H,F).

A finite tree of TD(H,F) whose root is an element e of E is called a
deduction of e from H in F . This is noted H `F e.

Christophe Garion IN112 IN112 Mathematical Logic 142/ 382

Deduction as a tree

Example on PL (“bad” formal system!):

Definition of F

A ∨ ¬A
(A1)

A A→ B

B
(MP)

Deduction of p ∨ r from q ∨ ¬q → p ∨ r :

(A1)q ∨ ¬q q ∨ ¬q → p ∨ r
(MP)

p ∨ r

Christophe Garion IN112 IN112 Mathematical Logic 142/ 382

Proofs and theorems

Definition (proof)
A deduction tree t ∈ TD(∅,F) of e is called a proof of e.

e is called a theorem of F .

This is noted `F e.

The same definition as in maths: a theorem is a formula that can be
deduced only from axioms (and other theorems).

Christophe Garion IN112 IN112 Mathematical Logic 143/ 382

What is expected from a formal system?

Effectiveness

explicitness: no ambiguities
mechanical: steps are determinist, no choice
finite: it will stop

Beware, in most formal systems:
deduction/proof finding is not effective (vs. truth tables for instance)
deduction/proof verification is effective

Christophe Garion IN112 IN112 Mathematical Logic 144/ 382

What is expected from a formal system?

Completeness
Every tautology is a theorem (wrt a particular semantics).

Soundness
Every theorem is a tautology (wrt a particular semantics).

Consistency
ϕ ∧ ¬ϕ cannot be proved.

Axioms independence
The axioms of the formal system are independent.

Christophe Garion IN112 IN112 Mathematical Logic 144/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H
Definition
Important theorems

10 Gentzen’s formal system for PL: G

11 Resolution formal system for PL: R

Christophe Garion IN112 IN112 Mathematical Logic 145/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H
Definition
Important theorems

10 Gentzen’s formal system for PL: G

11 Resolution formal system for PL: R

Christophe Garion IN112 IN112 Mathematical Logic 146/ 382

Deductive system: the simpliest one?

Definition (axioms)

A1 A→ (B ∨ A)
A2 (A→ B)→ ((A→ (B → C))→ (A→ C))
A3 (A→ B)→ ((A→ ¬B)→ ¬A)
A4 ¬¬A→ A

Definition (Modus Ponens or detachment rule)
From A and A→ B deduce B:

A A→ B
(MP)

B

Christophe Garion IN112 IN112 Mathematical Logic 147/ 382

Some remarks on Hilbert system

We only use the ¬, ∨ and → connectors, defining ∧ for instance from
those connectors.
You can find other axiomatizations with only ¬ and → for instance.

The Hilbert system is rather simple:

axioms and rules are “intuitive”
few axioms and rules

In fact, the original Hilbert-Ackermann system has lots of axioms,
explaining the role of each logical connector in the deduction process.

Christophe Garion IN112 IN112 Mathematical Logic 148/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H
Definition
Important theorems

10 Gentzen’s formal system for PL: G

11 Resolution formal system for PL: R

Christophe Garion IN112 IN112 Mathematical Logic 149/ 382

Soundness and completeness theorem

Theorem (soundness and completeness of H)
H is sound: for every wff ϕ, `H ϕ ⇒ |= ϕ

H is complete: for every wff ϕ, |= ϕ ⇒ `H ϕ

Proof of soundness: “trivial” by structural induction.

Proof of completeness: more complicated (model each line of the truth
table by the corresponding deduction). . .

Theorem (consistency)
H is consistent: for every wff ϕ, either 6`H ϕ or 6`H ¬ϕ.

Easy to prove using previous theorem. . .

Christophe Garion IN112 IN112 Mathematical Logic 150/ 382

Let us try to prove something easy .

Exercise
Prove that `H p → p.

Christophe Garion IN112 IN112 Mathematical Logic 151/ 382

Let us try to prove something easy .

Exercise
Prove that `H p → p.

Not so easy. . .

What are the two classical strategies used in maths for building proofs?

sy
nt
he
si
s

an
al
ys
is ¬¬p ¬¬p → p

p p → q → r
q → r

Christophe Garion IN112 IN112 Mathematical Logic 151/ 382

Let us try to prove something easy .

Exercise
Prove that `H p → p.

Synthesis is difficult: how can you choose the axioms to prove p → p for
instance?

In the Hilbert system, analysis is difficult too: given p → p to prove, you
know that as p → p is not an axiom, the previous step in the proof tree is
applying MP:

? ?→ (p → p)
p → p

How can you choose the previous formula? Some intuition in next slides. . .

Christophe Garion IN112 IN112 Mathematical Logic 151/ 382

Let us try to prove something easy .

Exercise
Prove that `H p → p.

Finally, the proof:

(p → (p → p)) → ((p → ((p → p) → p)) → (p → p)) p → (p → p)

(p → ((p → p) → p)) → (p → p) p → ((p → p) → p)

p → p

Easy ,

Christophe Garion IN112 IN112 Mathematical Logic 151/ 382

Some theorems of H

Identity (IDE) `H p ↔ p
De Morgan’s laws (DM) `H ¬(p ∧ q)↔ (¬p ∨ ¬q)

`H ¬(p ∨ q)↔ (¬p ∧ ¬q)
Commutativity (COM) `H (p ∨ q)↔ (q ∨ p)

`H (p ∧ q)↔ (q ∧ p)
Associativity (ASSO) `H (p ∧ (q ∧ r))↔ ((p ∧ q) ∧ r)

`H (p ∨ (q ∨ r))↔ ((p ∨ q) ∨ r)
Distributivity (DIS) `H (p ∧ (q ∨ r))↔ ((p ∧ q) ∨ (p ∧ r))

`H (p ∨ (q ∧ r))↔ ((p ∨ q) ∧ (p ∨ r))
Contraposition (CONT) `H (p → q)↔ (¬q → ¬p)
Material implication `H (p → q)↔ (¬p ∨ q)↔ ¬(p ∧ ¬q)
Idempotency (IDM) `H p ↔ (p ∧ p)

`H p ↔ (p ∨ p)
Exp.-Imp. (EX/IM) `H ((p ∧ q)→ r)↔ (p → (q → r))
Double negation (DN) `H p ↔ ¬¬p
Absorption `H (p ∧ (p ∨ q))↔ p

`H (p ∨ (p ∧ q))↔ p

Christophe Garion IN112 IN112 Mathematical Logic 152/ 382

Deduction theorem: the algorithm for →. . .

Theorem (deduction)
Let {A1, . . . ,An−1,A} be a set of wffs and B be a wff. Then
{A1, . . . ,An−1,A} `H B iff {A1, . . . ,An−1} `H A→ B.

Proof made by structural induction on proof tree of B which gives you a
hint on how to prove a wff in Hilbert system:

(A→ C)→ ((A→ (C → B))→ (A→ B))

...
A→ C

(A→ (C → B))→ (A→ B)

...
(A→ (C → B))

A→ B

So now you have an hint for the proof of p → p.

Christophe Garion IN112 IN112 Mathematical Logic 153/ 382

The train example .

Exercise
Prove that the following argument is valid:

John has travelled by bus or by train. If he has travelled by
bus or by car, he has been late and has missed the meeting.
He was not late. Therefore he has travelled by train.

We have to prove {b ∨ t, (b ∨ c)→ (l ∧m),¬l} `H t
or `H ((b ∨ t) ∧ ((b ∨ c)→ (l ∧m)) ∧ ¬l)→ t

å not so easy. . .

Christophe Garion IN112 IN112 Mathematical Logic 154/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H

10 Gentzen’s formal system for PL: G
Formal language: sequent
Gentzen’s deductive system
Automatic proof building

11 Resolution formal system for PL: R

Christophe Garion IN112 IN112 Mathematical Logic 155/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H

10 Gentzen’s formal system for PL: G
Formal language: sequent
Gentzen’s deductive system
Automatic proof building

11 Resolution formal system for PL: R

Christophe Garion IN112 IN112 Mathematical Logic 156/ 382

Introduction

Hilbert system is essentially a synthetic method and is very difficult to use:
for instance, you have to choose an instance of an axiom (the deduction
theorem gives us some hints on how to prove formulas like ϕ→ ψ).

An analytic method is easier to use: we can transform and decompose
the formula to be proved and thus starting from the formula to prove, we
can build the proof tree.

Is there some analytic proof methods for PL?

Sequent system G invented by Gentzen will be presented with a complete
algorithm

Christophe Garion IN112 IN112 Mathematical Logic 157/ 382

Formal language: notion of sequent

The base notion of Gentzen’s system is the sequent.

N.B.
The formal language of the formal system is not LPL!

Definition (sequent)
A sequent is defined by two multisets of wffs Γ and ∆ (resp. called
antecedent and consequent of the sequent) linked by the symbol ⇒.

A sequent is noted Γ⇒ ∆.

Christophe Garion IN112 IN112 Mathematical Logic 158/ 382

Sequent: intuition

A sequent Γ⇒ ∆ represents an argument (or a judgement): from
hypotheses/context Γ we can deduce ∆.

Instead of having a formal system working on formulas, we have a formal
system working on arguments.

The inference rules will allow us to derive argument from other arguments,
which is what you do intuitively.
For instance, if you can prove a ∧ b from Γ, then you can prove a from Γ.

Compare to H system in which you “forget” your hypothesis during the
proof.

Historically the G system we will use is derived from other systems invented
by Gentzen: natural deduction, LK and LK without the cut rule.

Christophe Garion IN112 IN112 Mathematical Logic 159/ 382

Sequent validity

Intuition
The sequent {ϕ1, . . . , ϕn} ⇒ {ψ1, . . . , ψm} represents the wff (ϕ1 ∧
. . . ∧ ϕn)→ (ψ1 ∨ . . . ∨ ψm).

{} ⇒ {ψ1, . . . , ψm} represents the wff > → (ψ1 ∨ . . . ∨ ψm) i.e.
(ψ1 ∨ . . . ∨ ψm).

{ϕ1, . . . , ϕn} ⇒ {} represents the wff ϕ1 ∧ . . . ∧ ϕn → ⊥ i.e.
(¬ϕ1 ∨ . . . ∨ ¬ϕn).

Definition (sequent validity)
Γ⇒ ∆ is valid if the “wff” (Γ→ ∆) representing the sequent is also
valid. This is noted |=G Γ⇒ ∆.

Christophe Garion IN112 IN112 Mathematical Logic 160/ 382

How to use G?

Let us suppose that we want to prove that a wff ϕ is valid. Then from the
previous slide, it is equivalent to prove that the sequent ⇒ ϕ is valid.
We can of course make the same reasoning for proving that ϕ is a
contradiction or that ϕ is a logical consequence of Σ:

|= ϕ⇔ |=G⇒ ϕ

|= ¬ϕ⇔ |=G ϕ⇒
Σ |= ϕ⇔ |=G Σ⇒ ϕ

Now, we have to define a complete and sound system that allows us to
automatically derive a proof of a valid sequent.

Christophe Garion IN112 IN112 Mathematical Logic 161/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H

10 Gentzen’s formal system for PL: G
Formal language: sequent
Gentzen’s deductive system
Automatic proof building

11 Resolution formal system for PL: R

Christophe Garion IN112 IN112 Mathematical Logic 162/ 382

Gentzen’s deductive system: axioms

Definition (axioms of G)
The axioms of G are the sequents of the following form:

Γ,A, Γ′ ⇒ ∆,A,∆′ Γ,⊥, Γ′ ⇒ ∆ Γ⇒ ∆,>,∆′

E.g.: {a ∧ b, c , d ∨ e} ⇒ {¬e, c , f }, {a, b} ⇒ {b, c}.

Christophe Garion IN112 IN112 Mathematical Logic 163/ 382

Gentzen’s deductive system: inference rules

Definition (inference rules of G)

Γ⇒ ∆,A
(¬l)

Γ,¬A⇒ ∆

Γ,A⇒ ∆
(¬r)

Γ⇒ ∆,¬A
Γ,A,B ⇒ ∆

(∧l)
Γ,A ∧ B ⇒ ∆

Γ⇒ ∆,A Γ⇒ ∆,B
(∧r)

Γ⇒ ∆,A ∧ B

Γ,A⇒ ∆ Γ,B ⇒ ∆
(∨l)

Γ,A ∨ B ⇒ ∆

Γ⇒ ∆,A,B
(∨r)

Γ⇒ ∆,A ∨ B

Γ⇒ ∆,A Γ,B ⇒ ∆
(→ l)

Γ,A→ B ⇒ ∆

Γ,A⇒ ∆,B
(→ r)

Γ⇒ ∆,A→ B

Christophe Garion IN112 IN112 Mathematical Logic 164/ 382

A closer look at inference rules

The G inference rules allow to:

build argument with more complex wffs from existing arguments. For
instance

Γ⇒ ∆,A Γ⇒ ∆,B
(∧r)

Γ⇒ ∆,A ∧ B

says that if you can prove A and ∆ from Γ and B and ∆ from Γ, then
you can prove A ∧ B and ∆ from Γ.
“swap” some wffs between the context/deduction parts of the sequent.
For instance

Γ,A⇒ ∆
(¬r)

Γ⇒ ∆,¬A
says that if you can prove ∆ from Γ and A, then you can prove ∆ and
¬A from Γ.

Christophe Garion IN112 IN112 Mathematical Logic 165/ 382

A closer look at inference rules

The G inference rules allow to:

build argument with more complex wffs from existing arguments. For
instance

Γ⇒ ∆,A Γ⇒ ∆,B
(∧r)

Γ⇒ ∆,A ∧ B

says that if you can prove A and ∆ from Γ and B and ∆ from Γ, then
you can prove A ∧ B and ∆ from Γ.
“swap” some wffs between the context/deduction parts of the sequent.
For instance

Γ,A⇒ ∆
(¬r)

Γ⇒ ∆,¬A
says that if you can prove ∆ from Γ and A, then you can prove ∆ and
¬A from Γ.

Christophe Garion IN112 IN112 Mathematical Logic 165/ 382

A closer look at inference rules

The G inference rules allow to:

build argument with more complex wffs from existing arguments. For
instance

Γ⇒ ∆,A Γ⇒ ∆,B
(∧r)

Γ⇒ ∆,A ∧ B

says that if you can prove A and ∆ from Γ and B and ∆ from Γ, then
you can prove A ∧ B and ∆ from Γ.
“swap” some wffs between the context/deduction parts of the sequent.
For instance

Γ,A⇒ ∆
(¬r)

Γ⇒ ∆,¬A
says that if you can prove ∆ from Γ and A, then you can prove ∆ and
¬A from Γ.

Notice that as we are working with multisets, the order of formulas is not
important.

Christophe Garion IN112 IN112 Mathematical Logic 165/ 382

Soundness and completness of G

Theorem (soundness and completeness of G)
G is sound: for every wff ϕ, `G ⇒ ϕ implies |= ϕ

G is complete: for every wff ϕ, |= ϕ implies `G ⇒ ϕ

Soundness: easy to prove by using structural induction.

Completness: more difficult

express Hilbert’s H system in G
use direct proof (what are you doing the next 2 weeks?)

Christophe Garion IN112 IN112 Mathematical Logic 166/ 382

Proving p → p .

Exercise
Prove that p → p is a valid using G.

OK, proving p → p is proving the sequent ⇒ p → p.

p ⇒ p
(→ r)⇒ p → p

Easy, hu?

This is the deduction theorem representation for G: from p you can deduce
p, therefore p → p is a theorem. . .

Christophe Garion IN112 IN112 Mathematical Logic 167/ 382

A more difficult proof .

Exercise
Prove (p → q)→ (¬q → ¬p) in G.

OK, that is more difficult:

¬q, p ⇒ p
(¬r)¬q ⇒ p,¬p

q ⇒ p, q
(¬l)q,¬q ⇒ p
(→ l)p → q,¬q ⇒ ¬p

(→ r)p → q ⇒ ¬q → ¬p
(→ r)

⇒ (p → q)→ (¬q → ¬p)

So, can we achieve this proof automatically?

Christophe Garion IN112 IN112 Mathematical Logic 168/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H

10 Gentzen’s formal system for PL: G
Formal language: sequent
Gentzen’s deductive system
Automatic proof building

11 Resolution formal system for PL: R

Christophe Garion IN112 IN112 Mathematical Logic 169/ 382

Goal of automatic proof building

Can a program (or you) automatically build a proof tree for a given
sequent?

Remember that we have two methods for building the proof tree:

synthesis: difficult to use, you have to choose axioms to start for
instance
analysis: consider the inference rules “backwards” as tactics to build
the tree starting from the wff/sequent you want to prove.

For instance, H is not a good system due to MP:

? ?→ ϕ
(MP)ϕ

Does G have good properties that allow to build the proof tree?

Christophe Garion IN112 IN112 Mathematical Logic 170/ 382

Two important properties of G

Theorem (reversibility of rules of G)
Every rule of G is such that the wff represented by the conclusion
sequent of the rule is logically equivalent to the conjunction of the
wff represented by the premises sequents of the rule.

Theorem (subformula property)
Every formula appearing in a sequent premise of G inference rule is a
subformula of a formula appearing in the sequent conclusion of the rule.

Not the case for MP for instance.

Christophe Garion IN112 IN112 Mathematical Logic 171/ 382

Canonical deduction tree

Definition (canonical deduction tree)
A canonical deduction tree of a sequent Γ⇒ ∆ is a tree built using
systematically inference rules of G. A branch building is stopped if:

either an axiom has been produced
either no inference rule can be applied

It is easy to prove that a canonical deduction tree is finite using finiteness
of wff and the subformula property.

Theorem (validity of a sequent)
A sequent S is valid iff a canonical deduction tree of S such that every
leaf of the tree is an axiom of G can be built.

Christophe Garion IN112 IN112 Mathematical Logic 172/ 382

Base idea of automatization

“Algorithm”:

to prove or refute the validity of an argument “from Σ we can deduce
ϕ”, represent the argument by the sequent Σ⇒ ϕ which will be the
root of the tree
use the inference rules “backwards” from the sequent to build the tree
until no rule can be applied
if every leaf of the tree is an axiom, the argument is valid
if there is one leaf that is not axiom, the argument is not valid and
this leaf shows a counterexample for the validity of the sequent

Christophe Garion IN112 IN112 Mathematical Logic 173/ 382

Example of canonical deduction tree: valid wff

Is (p → q)→ (¬q → ¬p) valid?
bu

ild
in
g
tr
ee p ⇒ p , q

(¬l)
¬q, p ⇒ p

(¬r)¬q ⇒ p,¬p
q ⇒ p, q

(¬l)q,¬q ⇒ p
(→ l)p → q,¬q ⇒ ¬p

(→ r)p → q ⇒ ¬q → ¬p
(→ r)

⇒ (p → q)→ (¬q → ¬p)

Christophe Garion IN112 IN112 Mathematical Logic 174/ 382

Example of canonical deduction tree: non valid wff

Is (p → q)→ (¬p → ¬q) valid?
bu

ild
in
g
tr
ee q, q ⇒ p
(¬r)q ⇒ ¬q, p
(¬l)q,¬p ⇒ ¬q

q ⇒ p, p
(¬r)⇒ p, p,¬q
(¬l)¬p ⇒ p,¬q
(→ l)p → q,¬p ⇒ ¬q

(→ r)p → q ⇒ ¬p → ¬q
(→ r)

⇒ (p → q)→ (¬p → ¬q)

The sequent is not valid. You can find a counterexample by building an
interpretation I falsifying one the non axiom leaf:

I(p) = F

I(q) = T

Christophe Garion IN112 IN112 Mathematical Logic 175/ 382

Tactics to build the proof tree

When building the proof tree, you have to choose rules. Is it important?

Theorem
Let T be a proof tree for Γ⇒ ∆. Let ϕ be the main formula in Γ or ∆
used in last rule in T . Then for every formula ψ in Γ or ∆, there is a
proof tree T ′ of Γ⇒ ∆ such that ψ is the main formula used in the
last rule in T ′.

So you can choose whatever formula you want to apply backwards the
rules, it will work!

But of course, the height/number of branches of the tree will depend on
the rule you choose. . .

å try to choose rules that do not “branch” the tree!

You can also verify that if a sequent is an axiom, not matter the rule you
apply on it backwards you will obtain an axiom.

Christophe Garion IN112 IN112 Mathematical Logic 176/ 382

Let us write some proofs! .

Exercise
Verify in G the yoga argument.

Exercise
Verify in G the train argument (or the tequila argument, as you want).

Christophe Garion IN112 IN112 Mathematical Logic 177/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H

10 Gentzen’s formal system for PL: G

11 Resolution formal system for PL: R
Formal language: conjunctive normal forms
Resolution deductive system
Deduction and completeness
A simple formal system with only one rule

Christophe Garion IN112 IN112 Mathematical Logic 178/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H

10 Gentzen’s formal system for PL: G

11 Resolution formal system for PL: R
Formal language: conjunctive normal forms
Resolution deductive system
Deduction and completeness
A simple formal system with only one rule

Christophe Garion IN112 IN112 Mathematical Logic 179/ 382

Conjunctive normal form: reminder

Definition (conjunctive normal form)

a literal is a propositional variable or the negation of a
propositional variable
a clause is a unordered disjunction of literals
a wff ϕ is in conjunctive normal form (CNF) iff
ϕ = ϕ1 ∧ . . . ∧ ϕn where ∀i ∈ {1, . . . , n} ϕi is a clause

Theorem (existence of a conjunctive normal form)
Every wff ϕ can be rewritten into a wff t(ϕ) in CNF such that ϕ and
t(ϕ) are logically equivalent.

Christophe Garion IN112 IN112 Mathematical Logic 180/ 382

Translation into CNF: rewritting rules

A formula can be translated into a formula in CNF using the following
rules:

step 1 (remove impl.)

{
ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)

ϕ→ ψ ≡ ¬ϕ ∨ ψ

step 2 (NNF)

¬(¬ϕ) ≡ ϕ

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

step 3 (CNF)

{
ϕ ∨ (ψ ∧ γ) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ γ)

(ψ ∧ γ) ∨ ϕ ≡ (ψ ∨ ϕ) ∧ (γ ∨ ϕ)

Christophe Garion IN112 IN112 Mathematical Logic 181/ 382

Set of clauses

Definition (set of clauses representing a formula)
Let ϕ be a wff. CL(ϕ) is the set of clauses obtained from CNF (ϕ) by
removing the conjunction connector in t(ϕ).

If CNF (ϕ) =
n∧

i=1
Ci then CL(ϕ) =

n⋃
i=1
{Ci}.

Definition
Let Σ = {ϕ1, . . . , ϕn} a set of wffs. Then cl(Σ) =

⋃
i∈{1,...,n}

CL(ϕi).

Theorem (equivalence between Σ and CL(Σ))
Let Σ be a set of wffs. Σ is satisfiable iff cl(Σ) is satisfiable (and Σ is
unsatisfiable iff cl(Σ) is unsatisfiable).

Christophe Garion IN112 IN112 Mathematical Logic 182/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H

10 Gentzen’s formal system for PL: G

11 Resolution formal system for PL: R
Formal language: conjunctive normal forms
Resolution deductive system
Deduction and completeness
A simple formal system with only one rule

Christophe Garion IN112 IN112 Mathematical Logic 183/ 382

Deductive system of R

Definition (factorisation rule F)

A ∨ A ∨ B1 ∨ . . . ∨ Bn
(F)

A ∨ B1 ∨ . . . ∨ Bn

such that n ≥ 0 and A and all Bi are literals.

Definition (resolution rule R)

A ∨ B1 ∨ . . . ∨ Bn ¬A ∨ C1 ∨ . . . ∨ Cm
(R)

B1 ∨ . . . ∨ Bn ∨ C1 ∨ . . . ∨ Cm

such that n ≥ 0, m ≥ 0 and A, all Bi and all Ci are literals.

Christophe Garion IN112 IN112 Mathematical Logic 184/ 382

Some remarks on R

There is no axiom in R!
å so we cannot deduce theorems using R (we will see how to do that)
å but we can use R to deduce ϕ from Σ

The rule (R) can be viewed as a generalization of classical rules, e.g. MP
and transitivity.

A A→ B
(MP)

B
A→ B B → C

(trans)
A→ C

Christophe Garion IN112 IN112 Mathematical Logic 185/ 382

Soundness of R

Theorem (soundness of R rules)
The rules of R are valid.

Easy to prove.

We have here a limited soundness for R due to the lack of axioms, but we
have the following result:

Theorem
Let Γ be a finite set of clauses and c a clause. If Γ `R c then Γ |= c .

Christophe Garion IN112 IN112 Mathematical Logic 186/ 382

Find John’s eyes color .

Exercise
John has blue eyes or green eyes and black hair or brown hair. He does
not have black hair if he has green eyes. He has blue eyes if he has
brown hair.
Modelize the previous sentences using a propositional language and
answer the following questions using Resolution formal system:

what color are John’s eyes?
what color are John’s hair?

Christophe Garion IN112 IN112 Mathematical Logic 187/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H

10 Gentzen’s formal system for PL: G

11 Resolution formal system for PL: R
Formal language: conjunctive normal forms
Resolution deductive system
Deduction and completeness
A simple formal system with only one rule

Christophe Garion IN112 IN112 Mathematical Logic 188/ 382

Completeness of R

Rules (R) and (F) define a new formal system R. Is R complete?

What is the relation between:

Σ |= ϕ < CL(Σ) `R CNF (ϕ)

It seems that the argument validity problem for PL can be reduced to a
deduction problem into the new formal system. . .

. . . but this is not true!

Find a counterexample.

Christophe Garion IN112 IN112 Mathematical Logic 189/ 382

A new decision problem

Translate argument validity problem into another problem:

Σ |= ϕ⇔ Σ ∪ {¬ϕ} is unsatisfiable
⇔ CL(Σ ∪ {¬ϕ}) is unsatisfiable

Conclusion
Showing that an argument is valid can be reduced to showing that a
set of clauses is unsatisfiable.

Due to the compactness theorem, we just have to show that a finite subset
of CL(Σ ∪ {¬ϕ}) is unsatisfiable.

Christophe Garion IN112 IN112 Mathematical Logic 190/ 382

A special case of deduction in R: refutation

There is a particular case in the (R) rule in which you obtain the empty
clause:

A ¬A
(R)2

By convention, 2 is the symbol for unsatisfiability (⊥ can also be used),
as the set of clauses used in R is clearly unsatisfiable.

Definition (refutation)
A refutation of a set of clauses Γ is a deduction of 2 in R.

Theorem (soundness of R for refutation)
Let Γ be a set of clauses. If Γ `R 2 then Γ is unsatisfiable.

Christophe Garion IN112 IN112 Mathematical Logic 191/ 382

Using refutation .

Exercise
Show that the following set of wff is unsatisfiable:

{p, p → q ∨ r , q → r ,¬r , s ∨ t}

Christophe Garion IN112 IN112 Mathematical Logic 192/ 382

Completeness of R

Finally:

Theorem (completeness of Resolution)
Let Σ be a set of wffs. If Σ is unsatisfiable, then CL(Σ) `R 2.

This can be proved by reducing the completeness problem to the
completeness problem of semantic trees (not presented in lecture).

Christophe Garion IN112 IN112 Mathematical Logic 193/ 382

How to use Resolution?

What to prove How to prove it

Σ is unsatisfiable CL(Σ) `R 2

Σ |= ϕ CL(Σ ∪ {¬ϕ}) `R 2

|= ϕ CL(¬ϕ) `R 2

Remember that you have only to prove that a subset of Γ is unsatisfiable!

Christophe Garion IN112 IN112 Mathematical Logic 194/ 382

I promise, last time with the train problem. . . .

Exercise
Verify in R the train argument (or the tequila argument, as you want).

Christophe Garion IN112 IN112 Mathematical Logic 195/ 382

Outline of part 3 - Formal systems for propositional logic

8 Formal systems

9 Hilbert formal system for PL: H

10 Gentzen’s formal system for PL: G

11 Resolution formal system for PL: R
Formal language: conjunctive normal forms
Resolution deductive system
Deduction and completeness
A simple formal system with only one rule

Christophe Garion IN112 IN112 Mathematical Logic 196/ 382

Resolvent and factor

In order to simplify the system, we can combine the two previous rules into
a single rule.
First, we have to define factors and binary resolvents (easy).

Definition (factor)
Let C be a clause. Then a clause obtain by applying (F) on C is called
factor of C .

Definition (binary resolvent)
Let C1 and C2 be two clauses. A clause obtained by applying (R) (if
possible) on C1 and C2 is called binary resolvent of C1 and C2.

Christophe Garion IN112 IN112 Mathematical Logic 197/ 382

Resolvent: combining the two notions

We can now combine the two notions:

Definition (resolvent)
Let C1 and C2 be two clauses. A resolvent is a factor of a clause which
can be:

either a binary resolvent of C1 and C2

either a binary resolvent of a factor of C1 and C2

either a binary resolvent of C1 and a factor of C2

either a binary resolvent of a factor of C1 and a factor of C2

Christophe Garion IN112 IN112 Mathematical Logic 198/ 382

A new formal system with a single rule!

Definition (resolution rule R)

C1 C2
(R)

R(C1,C2)

where R(C1,C2) is a resolvent of C1 and C2.

Of course, all previous properties apply to this new system (particularly
completeness).

Christophe Garion IN112 IN112 Mathematical Logic 199/ 382

Outline of part 4 - FOL language and semantics

4 - First-order logic language and
semantics

12 First order logic language

13 First order logic semantics

Christophe Garion IN112 IN112 Mathematical Logic 200/ 382

Introduction

PL is not very expressive.

Example
Define a propositional language and express formulae to represent and
to solve a 4x4 Sudoku game, for instance:

1
2

4
3

Christophe Garion IN112 IN112 Mathematical Logic 201/ 382

What do we need?

In order to have a more compact notation we need:

predicates

+ quantifiers + functions

Predicates (or relations)
Predicates represent properties verified by objects.

For instance, P(1, 2, 4) could mean “the case at column 1 and row 2
has 4 for value”

A predicate use a singular term and a general term to build a state-
ment.

This statement will be “true” if the property represented by the general
term is verified by the object represented by the singular term.

Christophe Garion IN112 IN112 Mathematical Logic 202/ 382

What do we need?

In order to have a more compact notation we need:

predicates

+ quantifiers + functions

Particular predicates
We need sometimes to define particular predicates.

For instance, we need an equality predicate for Sudoku.

In this case, we need to characterize the properties of the given predicate,
they are not given!

Christophe Garion IN112 IN112 Mathematical Logic 202/ 382

What do we need?

In order to have a more compact notation we need:

predicates + quantifiers

+ functions

Quantifiers
Universal and existential quantifiers can be used on variables.

For instance, we could write:

∀x∀y∀z∀z ′ P(x , y , z)→ (¬(z ′ = z)→ ¬P(x , y , z ′))

Notice that there is no “,” used to separate ∀ quantifiers.

Christophe Garion IN112 IN112 Mathematical Logic 202/ 382

What do we need?

In order to have a more compact notation we need:

predicates + quantifiers

+ functions

Quantifiers: examples

there is a man who is wise
∃x (M(x) ∧W (x))

every man is wise
≡ it is wrong that there is a man who is not wise
¬(∃x (M(x) ∧ ¬W (x))

by convention ¬∃x ϕ(x) will be denoted by ∀x ¬ϕ(x).

Christophe Garion IN112 IN112 Mathematical Logic 202/ 382

What do we need?

In order to have a more compact notation we need:

predicates + quantifiers

+ functions

Quantifiers: beware of scope

somebody has come and is gone
∃x C (x) ∧ G (x)

somebody has come and somebody is gone
(∃x C (x)) ∧ (∃y G (y))

everybody is a male or a female
∀x M(x) ∨ F (x)

everybody is a male or everybody is a female
(∀x M(x)) ∨ (∀x F (x))

Christophe Garion IN112 IN112 Mathematical Logic 202/ 382

What do we need?

In order to have a more compact notation we need:

predicates + quantifiers + functions

Functions
Sometimes, we need to build objects from other objects.

For instance, when dealing with integers, the + function allows to
build an integer from two other integers.

1 + 2 is not a property but a new integer!

Christophe Garion IN112 IN112 Mathematical Logic 202/ 382

What do we need?

In order to have a more compact notation we need:

predicates + quantifiers + functions

Functions: example
“John’s father︸ ︷︷ ︸

new individual

plays soccer”

å Plays(father(john), soccer)

Remark: in another language
∃x F (x , john) ∧ Plays(x , soccer)

Christophe Garion IN112 IN112 Mathematical Logic 202/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language
Alphabet
Language
Scope, free and bound variables
Substitution
Subformulas

13 First order logic semantics

Christophe Garion IN112 IN112 Mathematical Logic 203/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language
Alphabet
Language
Scope, free and bound variables
Substitution
Subformulas

13 First order logic semantics

Christophe Garion IN112 IN112 Mathematical Logic 204/ 382

Alphabet

Definition (alphabet)
The alphabet of LFOL is composed of:

logical symbols
an inifinite and enumerable set V of individual variables x , y , . . .
connectors: >,⊥,¬,→,∧,∨,↔
quantifiers: ∃, ∀
, ()

non-logical symbols
an enumerable set P of predicate symbols P,Q,R, . . .
an enumerable set F of functions f , g , h, . . .
an enumerable set C of individual constants a, b, c, . . .

Christophe Garion IN112 IN112 Mathematical Logic 205/ 382

Signature of a first-order language

Like in the propositional case, V, >, ⊥, ¬, ∨, →, ↔, (,) and are called
logical symbols because their logical meaning is already defined.

On the contrary, P, F and C depend on the problem to be modelled and
thus the predicate, function and constant symbols are called non-logical
symbols. It is also called the signature S of the language.

So, when you want to model a problem using LFOL, you first have to
define the signature of your language, i.e. S = 〈P,F , C〉.

When defining predicates and functions, the arity is often denoted using
the / notation:

P/2 a predicate P of arity 2
f /3 a function f of arity 3

Christophe Garion IN112 IN112 Mathematical Logic 206/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language
Alphabet
Language
Scope, free and bound variables
Substitution
Subformulas

13 First order logic semantics

Christophe Garion IN112 IN112 Mathematical Logic 207/ 382

LFOL terms

An expression is a sequence of symbols.

Some expressions, called terms, represents objects.

ex: Socrates, John’s father, 3+(2+5), . . .

Definition (term)
The set of terms of LFOL is defined inductively by:

a variable is a term
a constant is a term
if f is a function symbol with arity m and if t1, . . . , tm are terms,
then f (t1, . . . , tm) is a term

Christophe Garion IN112 IN112 Mathematical Logic 208/ 382

Well-formed formulas

Some expressions are interpreted as assertions. Those expressions are
well formed formulas (wffs).

Definition (atomic formula)
If P is a predicate symbol with arity n and if t1, . . . , tn are terms, then
P(t1, . . . , tn) is an atomic formula of LFOL.

Definition (well formed formula)
The set of wff of LFOL is defined inductively as follows:

an atomic formula is a wff
> and ⊥ are wffs
if ϕ and ψ are wffs, then (¬ϕ), (ϕ ∨ ψ), (ϕ ∧ ψ), (ϕ→ ψ) and
(ϕ↔ ψ) are wffs
if ϕ is a wff and x is a variable, then (Qx ϕ) where Q ∈ {∀,∃} is
a wff
ϕ is called the scope of Qx (cf. later).

Some conventions (as in the PL case)

To simplify the writing, some conventions can be used:
removing of external parentheses: (a ∧ b) ; a ∧ b

¬ is written without parentheses: (¬a) ; ¬a
connectors are associative from left to right: ((a∧ b)∧ c) ; a∧ b ∧ c
quantifiers sequences can be simplified: Q1x(Q2y ϕ) ; Q1xQ2y ϕ

Connectors and quantifiers can be ordered by growing priority like in the
PL case:

∀ ∃ ↔ → ∨ ∧ ¬

Christophe Garion IN112 IN112 Mathematical Logic 210/ 382

Some remarks on LFOL

Constants can also be viewed as 0-ary functions, i.e. functions that does
not take parameters. We use a distinct set C to simplify the presentation
of FOL semantics.

If you consider a FO language whose signature is the following:

C = ∅
F = ∅
every predicate symbol P in P is a 0-ary symbol, i.e. it does not take
parameters

then you obtain propositional logic. Thus, PL is a subset of FOL.

Christophe Garion IN112 IN112 Mathematical Logic 211/ 382

Modelling exercise .

Exercise
Use fist-order logic to model the following declarative sentences. In each case, state
what predicates, constants and functions mean.

1 every rose is a flower
2 no rose is a flower
3 some roses are flowers
4 some roses are not flowers
5 George is french, John is english and they are friends
6 all rats and all mice are gray
7 all giraffes are taller than all rats
8 cats and dogs are mammals
9 romans and greeks were enemies
10 who likes David likes also Tom
11 David only likes one person
12 everybody has a father and a mother

Christophe Garion IN112 IN112 Mathematical Logic 212/ 382

Modelling exercise: maths, again. . . .

Exercise
Let E be a set. Model the following mathematical notions using a
first-order language. Define precisely the signature of the language.

= define the “classical” equality relation on E (not easy!)
≤ is a preorder on E

(E , .) is a monoid

Christophe Garion IN112 IN112 Mathematical Logic 213/ 382

Syntax tree of a term

As in the PL case, every wff can be represented by a syntax tree. We
have first to define how to build the syntax tree for terms.

In the FO case, the tree is not necessary a binary tree. We use the
notation 〈t, t1, t2, t3〉 to represent for instance the following tree:

t

t1 t2 t3

〈t, ∅〉 will represent the tree consisting of only one node containing t
without subtrees.

Christophe Garion IN112 IN112 Mathematical Logic 214/ 382

Syntax tree of a term

Definition (syntax tree for terms)
Let t be a term. The syntax tree of t is defined inductively as follows:

if t is a variable, then ST (t) = 〈t, ∅〉
if t is a constant, then ST (t) = 〈t, ∅〉
if t is a n-ary function applied to terms t1, . . . , tn, then
ST (t) = 〈f ,ST (t1), . . . ,ST (tn)〉

Christophe Garion IN112 IN112 Mathematical Logic 214/ 382

Syntax tree of a term

For instance, the term f (x , c , g(a, y)) will be represented by the tree

f

x c g

a y

Christophe Garion IN112 IN112 Mathematical Logic 214/ 382

Syntax tree of a FOL wff

Definition (syntax tree)
Let ϕ be a wff. The syntax tree of ϕ is defined inductively as follows:

if ϕ is an atomic formula P(t1, . . . , tn), then
ST (ϕ) = 〈P,ST (t1), . . . ,ST (tn)〉
if ϕ ≡ ¬ϕ1, then ST (ϕ) = 〈¬,ST (ϕ1)〉
if ϕ ≡ ϕ1 ∗ ϕ2 where ∗ is a binary connector, then
ST (ϕ) = 〈∗,ST (ϕ1),ST (ϕ2)〉
if ϕ ≡ Qx ϕ1 where Q ∈ {∀,∃} and x ∈ V then
ST (ϕ) = 〈Qx ,ST (ϕ1)〉

Christophe Garion IN112 IN112 Mathematical Logic 215/ 382

Syntax tree of a FOL wff

For instance, the formula ∀x P(x)→ ∃y Q(x , y) will be represented by
the following tree:

∀x

→

P

x

∃y

Q

x y

Christophe Garion IN112 IN112 Mathematical Logic 215/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language
Alphabet
Language
Scope, free and bound variables
Substitution
Subformulas

13 First order logic semantics

Christophe Garion IN112 IN112 Mathematical Logic 216/ 382

A correct definition of scope

We have defined the scope of a formula Qx ϕ to be ϕ, but is it really the
case?

Consider for instance ∀x (P(x)→ (∃x Q(x))). If the intuitive meaning of
the scope of ∀x is to define the formula in which you can replace x by
“what you want”, it is false.

Using the syntax tree, we can define scope in a better way:

Definition (scope)
Let Qx ϕ be a wff with Q ∈ {∀,∃}. The scope of Qx in Qx ϕ is
the subtree of Qx in ST (Qx ϕ) minus the subtrees in ST (Qx ϕ)
reintroducing a new quantifier for x .

With this definition the scope of ∀x in ∀x (P(x)→ (∃x Q(x))) is only
P(x).

Christophe Garion IN112 IN112 Mathematical Logic 217/ 382

A correct definition of scope

We have defined the scope of a formula Qx ϕ to be ϕ, but is it really the
case?

Consider for instance ∀x (P(x)→ (∃x Q(x))). If the intuitive meaning of
the scope of ∀x is to define the formula in which you can replace x by
“what you want”, it is false.

N.B. (important)
Avoid reintroducing new quantifiers for a previously quantified variable
in wff!

For instance, rewrite the previous formula as ∀x (P(x)→ (∃y Q(y)))
which is unambiguous.

Christophe Garion IN112 IN112 Mathematical Logic 217/ 382

Free and bound variables

Definition (free and bound variables)
The set BV of bound variables and FV of free variables of a wff ϕ
are defined inductively as follows:

if ϕ is an atomic formula P(t1, . . . , tn), then BV (ϕ) = ∅ and
FV (ϕ) = {ti |i ∈ {1, . . . , n} and ti is a variable}
if ϕ ≡ ¬ϕ1 then BV (ϕ) = BV (ϕ1) and FV (ϕ) = FV (ϕ1)

if ϕ ≡ ϕ1 conn ϕ2 where conn ∈ {∧,∨,→,↔} then
BV (ϕ) = BV (ϕ1) ∪ BV (ϕ2) and FV (ϕ) = FV (ϕ1) ∪ FV (ϕ2)

if ϕ ≡ Qx ϕ1 where Q ∈ {∀,∃}, then BV (ϕ) = BV (ϕ1) ∪ {x}
and FV (ϕ) = FV (ϕ1)− {x}

Definition (closed formula)
A closed formula is a formula ϕ such that FV (ϕ) = ∅.

Christophe Garion IN112 IN112 Mathematical Logic 218/ 382

Free and bound variables: examples

free bound

(∃x P(x)) ∧ (∀y ¬Q(y)) ∧ R(z)

(∃x P(x)) ∧ Q(x)

N.B.
When modelling “real” notions, it is very difficult to use open formulas
(i.e. non closed formulas).

Christophe Garion IN112 IN112 Mathematical Logic 219/ 382

Free and bound variables: using the syntax tree

It is easy to use the syntax tree of a formula to find if a given variable x is
bound or free: if there is an ancestor of the node of x of the form Qx ,
then x is bound.

∧

∧

∃x

P

x

∀y

¬

Q

y

R

z

Christophe Garion IN112 IN112 Mathematical Logic 220/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language
Alphabet
Language
Scope, free and bound variables
Substitution
Subformulas

13 First order logic semantics

Christophe Garion IN112 IN112 Mathematical Logic 221/ 382

Substitutions

As variables are placeholders, we should be able to replace them with
concrete (or not) terms.

Definition (substitution)
Let ϕ be a wff, x a variable and t a term. ϕ[x/t] denotes the formula
obtained by replacing all free occurrences of x in ϕ by t.

You will sometimes find the “contrary” in some textbook, i.e. [t/x]
meaning “replace x by t”.

Examples:

P(x)[x/y] ≡ P(y)
P(x)[x/x] ≡ P(x)
(P(x)→ ∀x P(x))[x/y] ≡ (P(y)→ ∀x P(x))

Using the syntax tree of ϕ, it means replacing all x nodes by the syntax
tree of t.

Christophe Garion IN112 IN112 Mathematical Logic 222/ 382

Free substitutions

Substitution should preserve validity in semantics.

Let us consider ∃y P(x , y). Can x be substituted by y in this formula?
å no, as you change the meaning of the formula!

Definition (free substitution)
A term t is freely substitutable to x in ϕ if

ϕ is an atomic formula
ϕ ≡ ¬ϕ1 and t is freely substituable to x in ϕ1

ϕ ≡ ϕ1 conn ϕ2 where conn ∈ {∧,∨,→,↔} and t is freely
substituable to x in ϕ1 and ϕ2

ϕ ≡ Qy ϕ1 where Q ∈ {∀,∃} and
x and y are the same variable
y is not a variable of t and t is freely substitutable for x in ϕ1

Christophe Garion IN112 IN112 Mathematical Logic 223/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language
Alphabet
Language
Scope, free and bound variables
Substitution
Subformulas

13 First order logic semantics

Christophe Garion IN112 IN112 Mathematical Logic 224/ 382

Subformulas

Like in the propositional case, we can define the notion of subformulas of
a wff.

Definition (subformulas)
The subformulas set of ϕ denoted by sf (ϕ) is defined inductively as
follows:

if ϕ is an atomic formula P(t1, . . . , tn), then
sf (ϕ) = {P(t1, . . . , tn)}
sf (¬ϕ) = {¬ϕ} ∪ sf (ϕ)

if conn is a binary connector,
sf (ϕ1 conn ϕ2) = {ϕ1 conn ϕ2} ∪ sf (ϕ1) ∪ sf (ϕ2)

if Q ∈ {∀,∃}, sf (Qx ϕ) =
{Qx ϕ} ∪ {ϕ[x/t] | forall x ∈ V and t freely subs. for x in ϕ}

Christophe Garion IN112 IN112 Mathematical Logic 225/ 382

Subformulas: example

Let us consider a FO language whose signature is 〈{P/1}, {f /1}, ∅.

The subformulas set of ∀x P(x) is

{∀x P(x),P(x),P(f (x)),P(f (f (x))), . . .}

Thus, if you consider a language with an non-empty set of functions, the
subformulas set of a wff can be infinite!

Christophe Garion IN112 IN112 Mathematical Logic 226/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language

13 First order logic semantics
Introduction and intuition
Formulas interpretation and evaluation
Evaluation of terms and formulas
Satisfaction, validity and logical consequence
Some theorems about First-Order Logic
Decidability for FOL
An algorithm for validity in FOL

Christophe Garion IN112 IN112 Mathematical Logic 227/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language

13 First order logic semantics
Introduction and intuition
Formulas interpretation and evaluation
Evaluation of terms and formulas
Satisfaction, validity and logical consequence
Some theorems about First-Order Logic
Decidability for FOL
An algorithm for validity in FOL

Christophe Garion IN112 IN112 Mathematical Logic 228/ 382

Semantics: introduction

A statement in FOL L is neither true nor false, because it has no
interpretation.

å e.g. is ∀x M(x)→ ∃y F (x , y) true or false?

An interpretation must be given to non-logical symbols (M and F here).

Examples:

M ≡ “. is a man”
F ≡ “. is the father of .”

The sentence signifies “every man has a father”.

M ≡ “. is a country”
F ≡ “. is president of .”

The sentence signifies “every country has a president”.

Christophe Garion IN112 IN112 Mathematical Logic 229/ 382

Semantics: interpretation domain

A FOL language is based on predicates which express properties verified
by objects.

å we need a set of objects to work on

Can the set of constants defined in the signature be sufficient?
å no, because they may be functions!

Moreover, we need to fix the possible range of (all) the variables.

Consequence
When wanting to evaluate a formula, we need:

a set of objects, called domain of discourse or interpretation
domain
a mapping from terms to objets of the interpretation domain

Christophe Garion IN112 IN112 Mathematical Logic 230/ 382

Semantics: evaluating formulas

When trying to evaluate the “truth value” of P(a), we want to verifiy if the
object represented by a verifies the property represented by P.

å we need to explicitely define all the objects verifying the property
represented by P

Thus, the interpretation of P will be a subset of the interpretation
domain.

What happens when dealing with variables?

P(x): using the mapping from terms to interpretation domain, verify
that the object represented by x verifies P
∀x P(x): verify that each element of interpretation domain
verifies P

For composed formulas, the same rules as in PL will be used.

Christophe Garion IN112 IN112 Mathematical Logic 231/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language

13 First order logic semantics
Introduction and intuition
Formulas interpretation and evaluation
Evaluation of terms and formulas
Satisfaction, validity and logical consequence
Some theorems about First-Order Logic
Decidability for FOL
An algorithm for validity in FOL

Christophe Garion IN112 IN112 Mathematical Logic 232/ 382

Interpretation

Definition (interpretation)
An interpretation I for FOL is a pair 〈DI , I〉 such that:

DI is a non empty set of objects (or individuals) called
interpretation domain.
I is an interpretation function s.t.:

every predicate symbol P/n is associated to a subset of Dn
i

every constant symbol a is associated to I(a) ∈ Di

every function symbol f /n is associated to a function from Dn
I in

DI

Christophe Garion IN112 IN112 Mathematical Logic 233/ 382

Interpretation: a first example

The two following examples are taken from Huth and Ryan 2004.

Huth, Michael and Mark Ryan (2004).
Logic in Computer Science – Modelling and reasoning
about systems.
Cambridge University Press.

Christophe Garion IN112 IN112 Mathematical Logic 234/ 382

Interpretation: a first example

Let us consider a FO language with the following signature:
〈{F/1,R/2}, ∅, {i}〉.

We will use this language to represent a transition system:

F (x) x is a final state
R(x , y) there is a transition between x and y
i a constant representing the initial state

Christophe Garion IN112 IN112 Mathematical Logic 234/ 382

Interpretation: a first example

Let us consider the following transition system:

astart b c

An intepretation for representing this system can be the following:

DI = {a, b, c}
I(i) = a

I(F) = {b, c}
I(R) = {(a, a), (a, b), (a, c), (b, c), (c , c)}

Christophe Garion IN112 IN112 Mathematical Logic 234/ 382

Interpretation: a first example

astart b c

DI = {a, b, c}
I(i) = a

I(F) = {b, c}
I(R) = {(a, a), (a, b), (a, c), (b, c), (c , c)}

We can try to “explain” intuitively some formulas on this interpretation:

∃y R(i , y)

Christophe Garion IN112 IN112 Mathematical Logic 234/ 382

Interpretation: a first example

astart b c

DI = {a, b, c}
I(i) = a

I(F) = {b, c}
I(R) = {(a, a), (a, b), (a, c), (b, c), (c , c)}

We can try to “explain” intuitively some formulas on this interpretation:

∃y R(i , y)

“there a transition from the initial state to some state”
å true, see from example that (a, b) ∈ I(R)

Christophe Garion IN112 IN112 Mathematical Logic 234/ 382

Interpretation: a first example

astart b c

DI = {a, b, c}
I(i) = a

I(F) = {b, c}
I(R) = {(a, a), (a, b), (a, c), (b, c), (c , c)}

We can try to “explain” intuitively some formulas on this interpretation:

¬F (i)

Christophe Garion IN112 IN112 Mathematical Logic 234/ 382

Interpretation: a first example

astart b c

DI = {a, b, c}
I(i) = a

I(F) = {b, c}
I(R) = {(a, a), (a, b), (a, c), (b, c), (c , c)}

We can try to “explain” intuitively some formulas on this interpretation:

¬F (i)

“the initial state is not a final state”
å true, see I(F)

Christophe Garion IN112 IN112 Mathematical Logic 234/ 382

Interpretation: a first example

astart b c

DI = {a, b, c}
I(i) = a

I(F) = {b, c}
I(R) = {(a, a), (a, b), (a, c), (b, c), (c , c)}

We can try to “explain” intuitively some formulas on this interpretation:

∀x∀y∀z (R(x , y) ∧ R(x , z)→ y = z)

Christophe Garion IN112 IN112 Mathematical Logic 234/ 382

Interpretation: a first example

astart b c

DI = {a, b, c}
I(i) = a

I(F) = {b, c}
I(R) = {(a, a), (a, b), (a, c), (b, c), (c , c)}

We can try to “explain” intuitively some formulas on this interpretation:

∀x∀y∀z (R(x , y) ∧ R(x , z)→ y = z)

“the transition relation is determinist”
å false, (a, a) ∈ I(R), (a, b) ∈ I(R) and (a, c) ∈ I(R)

Christophe Garion IN112 IN112 Mathematical Logic 234/ 382

Interpretation: a first example

astart b c

DI = {a, b, c}
I(i) = a

I(F) = {b, c}
I(R) = {(a, a), (a, b), (a, c), (b, c), (c , c)}

We can try to “explain” intuitively some formulas on this interpretation:

∀x∃y R(x , y)

Christophe Garion IN112 IN112 Mathematical Logic 234/ 382

Interpretation: a first example

astart b c

DI = {a, b, c}
I(i) = a

I(F) = {b, c}
I(R) = {(a, a), (a, b), (a, c), (b, c), (c , c)}

We can try to “explain” intuitively some formulas on this interpretation:

∀x∃y R(x , y)

“there is no deadlock state”
å true, see I(R)

Christophe Garion IN112 IN112 Mathematical Logic 234/ 382

Interpretation: a second example (more complex)

Let us consider a FO language with the following signature:
〈{≤ /2}, {•/2}, {e}〉 (≤ and • will be used in infix notation).

We will use this language to represent an order on binary strings:

e a constant representing the empty word
x • y represents the concatenation of x and y
x ≤ y x is a prefix of y

An interpretation for representing the order on binary strings can be the
following:

DI = the set of finite words on the alphabet {0, 1}
I(e) = ε

I(•) = string concatenation over DI

I(≤) = string natural prefix ordering over DI

Christophe Garion IN112 IN112 Mathematical Logic 235/ 382

Interpretation: a second example (more complex)

Let us consider a FO language with the following signature:
〈{≤ /2}, {•/2}, {e}〉 (≤ and • will be used in infix notation).

We will use this language to represent an order on binary strings:

e a constant representing the empty word
x • y represents the concatenation of x and y
x ≤ y x is a prefix of y

An interpretation for representing the order on binary strings can be the
following:

DI = the set of finite words on the alphabet {0, 1}
I(e) = ε

I(•) = string concatenation over DI

I(≤) = string natural prefix ordering over DI

Christophe Garion IN112 IN112 Mathematical Logic 235/ 382

Formula evaluation: introduction

Let us consider the previous example on transition systems:

DI = {a, b, c}
I(i) = a

I(F) = {b, c}
I(P) = {(a, a), (a, b), (a, c), (b, c), (c , c)}

Intuitively, ∃x F (x) holds in I : for instance 〈b〉 ∈ I(F).

In other words, there is an assignment of variables in I denoted by σ s.t.
“formula F (x) is true in I given σ”

This will be noted: there is σ s.t. |=I ,σ F (x).

We will then deduce |=I ∃x F (x).

Christophe Garion IN112 IN112 Mathematical Logic 236/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language

13 First order logic semantics
Introduction and intuition
Formulas interpretation and evaluation
Evaluation of terms and formulas
Satisfaction, validity and logical consequence
Some theorems about First-Order Logic
Decidability for FOL
An algorithm for validity in FOL

Christophe Garion IN112 IN112 Mathematical Logic 237/ 382

Terms evaluation

Definition (assignment)
An assignment σ of I is a function from the set of variables symbols to
DI .
For x ∈ V and a ∈ DI , we will denote by σ[x 7→ a] the assignment
in which x is assigned to a and for all y ∈ V different from x , σ[x 7→
a](y) = σ(y).

Definition (terms evaluation)
The evaluation of a term under an interpretation I and an assignment
σ is defined inductively as follows:

valI ,σ(a) = I(a) if a is a constant symbol
valI ,σ(x) = σ(x) if x is a variable symbol
valI ,σ(f (t1, . . . , tn)) = I(f)(valI ,σ(t1), . . . , valI ,σ(tn))

Christophe Garion IN112 IN112 Mathematical Logic 238/ 382

Formula evaluation: truth value

Definition (truth value)
The truth value of a wff ϕ under an interpretation I and an assignment
σ, denoted by [[ϕ]]I ,σ is defined by:

if P(t1, . . . , tn) is an atomic wff, [[P(t1, . . . , tn)]]I ,σ = T iff
〈valI ,σ(t1), . . . , valI ,σ(tn)〉 ∈ I(P)

[[>]]I ,σ = T and [[⊥]]I ,σ = F

[[¬ϕ]]I ,σ = f¬([[ϕ]]I ,σ)

[[ϕ ∨ ψ]]I ,σ = f∨([[ϕ]]I ,σ, [[ψ]]I ,σ)

[[ϕ ∧ ψ]]I ,σ = f∧([[ϕ]]I ,σ, [[ψ]]I ,σ)

[[ϕ→ ψ]]I ,σ = f→([[ϕ]]I ,σ, [[ψ]]I ,σ)

[[ϕ↔ ψ]]I ,σ = f↔([[ϕ]]I ,σ, [[ψ]]I ,σ)

[[∀x ϕ(x)]]I ,σ = T iff for all d ∈ DI [[ϕ(x)]]I ,σ[x 7→d] = T

Christophe Garion IN112 IN112 Mathematical Logic 239/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language

13 First order logic semantics
Introduction and intuition
Formulas interpretation and evaluation
Evaluation of terms and formulas
Satisfaction, validity and logical consequence
Some theorems about First-Order Logic
Decidability for FOL
An algorithm for validity in FOL

Christophe Garion IN112 IN112 Mathematical Logic 240/ 382

Satisfaction, validity, models

We use the same definition as in the PL case:

Definition

ϕ is satisfiable in I under σ [[ϕ(x)]]I ,σ = T .
This is noted |=I ,σ ϕ.
ϕ is satisfiable in I (i.e. I satisfies ϕ) iff for every assignment σ
in I , |=I ,σ ϕ holds.
This is noted |=I ϕ and I is said to be a model of ϕ.
ϕ is satisfiable iff ϕ has a model
ϕ is valid iff every interpretation I is a model of ϕ
ϕ is contradictory iff for all interpretation I |=I ¬ϕ.
let Σ be a set of formulas. I is a model of Σ iff I is a model of
every formula in Σ.

NB: there is a formal difference between tautologies and valid wff in FOL.

Christophe Garion IN112 IN112 Mathematical Logic 241/ 382

Logical consequence

The same as in PL:

Definition (logical consequence)
Let ϕ and ψ be two wffs. ϕ is a logical consequence of ψ, denoted
by ψ |= ϕ, iff for every interpretation I and for every assignement σ,
|=I ,σ ψ implies |=I ,σ ϕ.

Definition (logical consequence of a set)
Let n ∈ N∗, Σ = {ψ1, . . . , ψn} be a set of wffs and ϕ be a wff. ϕ is
a logical consequence of Σ iff for every interpretation I, for every
assignement σ and for all ψ ∈ {ψ1, . . . , ψn}, |=I ,σ ψ implies |=I ,σ ϕ.

This noted Σ |= ϕ.

Christophe Garion IN112 IN112 Mathematical Logic 242/ 382

Logical consequence: some remarks

The definition of logical consequence seems more complicated than the
“intuitive” one you may think about. Why do we not use the following
definition: “ψ |= ϕ iff for all interpretation I , if |=I ψ then |=I ϕ”?

The main problem is the eventual use of free variables in formulas.

Think about the following logical consequence: P(x) |= ∀x P(x). Does it
have to hold?

You can convince yourself by using N as interpretation domain and P as a
predicate signifying “to be even”.

Notice that if you use only sentences (i.e. closed formulas), then the two
definitions are equivalent.

Christophe Garion IN112 IN112 Mathematical Logic 243/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language

13 First order logic semantics
Introduction and intuition
Formulas interpretation and evaluation
Evaluation of terms and formulas
Satisfaction, validity and logical consequence
Some theorems about First-Order Logic
Decidability for FOL
An algorithm for validity in FOL

Christophe Garion IN112 IN112 Mathematical Logic 244/ 382

Useful theorems, like in the PL case

Theorem (deduction)
Σ, ϕ |= ψ iff Σ |= ϕ→ ψ

This theorem allows to reduce the “validity of an argument” problem to the
“validity of a wff” problem (but this problem is more complicated in the FO
case!).

Theorem
Σ |= ϕ iff Σ ∪ {¬ϕ} is not satisfiable.

Again, this is kind of a “reductio ad absurdum” theorem for FOL that will
be useful for the Resolution formal system.

Christophe Garion IN112 IN112 Mathematical Logic 245/ 382

Compactness of FOL: a first (and important) drawback

Theorem (compactness of FOL)
Let Σ be a set of closed FOL wff. Then Σ is satisfiable iff every finite
subset of Σ is satisfiable.

This theorem is really important to understand the limitations of FOL
concerning expressiveness.

Think also about this equivalent formulation of the theorem: Σ is
unsatisfiable iff there is a finite subset of Σ that is unsatisfiable.

Christophe Garion IN112 IN112 Mathematical Logic 246/ 382

Compactness of FOL: an example

We want to define reachability in a graph using FOL. Suppose that we
define a language with signature 〈{G/2,R/2}, ∅, ∅〉 where:

G (x , y) means that there is a direct edge from x to y

R(x , y) means that y is reachable from x , i.e. that there is a finite
path from x to y

Can we really define R(x , y)?

Example

1 2

3

Is 3 reachable from 1 ?

Christophe Garion IN112 IN112 Mathematical Logic 247/ 382

The Löwenheim-Skolem theorem

Theorem (Löwenheim-Skolem)
Let S be a signature, I an interpretation on S and K an infinite cardinal
numbers. Then there is an interpretation I ′ on S s.t. |DI ′ | = K and

if K < |DI | then I ′ is an elementary submodel of I
if K > |DI | then I ′ is an elementary extension of I

Hu?

It means that you cannot control the cardinalities of models of first-order
theories with an infinite model.

So for instance:

the FO theory of (N,+,×, 0, 1) has uncountable models. . .
the FO theory of (R,+,×, 0, 1) has a countable model. . .

Christophe Garion IN112 IN112 Mathematical Logic 248/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language

13 First order logic semantics
Introduction and intuition
Formulas interpretation and evaluation
Evaluation of terms and formulas
Satisfaction, validity and logical consequence
Some theorems about First-Order Logic
Decidability for FOL
An algorithm for validity in FOL

Christophe Garion IN112 IN112 Mathematical Logic 249/ 382

Undecidability of FOL

Question: is the set of valid wffs in FOL decidable (what Hilbert has called
the Entscheidungsproblem)?

Unfortunately, the answer is no for a first-order language with at least a
predicate of arity 2.

Church, Alonzo (1936).
“An unsolvable problem of elementary number theory”.
In: American Journal of Mathematics 58,
Pp. 345–363.

Turing, Alan (1937).
“On computable numbers, with an application to the Entschei-
dungsproblem”.
In: Proceedings of the London Mathematical Society 42,
Pp. 230–265.

Christophe Garion IN112 IN112 Mathematical Logic 250/ 382

Semidecidability of FOL

But we have a semi-decidability result for FOL:

Theorem (semidecidability of first-order logic)
The problem of finding if a first-order logic formula is valid or not is
semidecidable.

This means that there is an algorithm which:

halts and returns yes if the answer to the problem is yes
halts and returns no or never halts if the answer to the problem is no

Christophe Garion IN112 IN112 Mathematical Logic 251/ 382

So, are we doomed?

The semidecidability of FOL is of course a big drawback, but there are
tractable fragments of FOL that are interesting:

propositional logic of course ,

monadic predicate logic, i.e. FOL restricted to unary predicate
symbols and no function symbols
description logics, which is a subset of FOL used for knowledge
representation (ontologies, Semantic Web, etc.)
some modal logics
etc.

Notice of course that verifying that a wff is valid with a “truth table”
algorithm is impossible: we have to checked that the formula is true in
every possible interpretation and in particular in every possible domain!

But we will see an interesting algorithm in the next slides. . .

Christophe Garion IN112 IN112 Mathematical Logic 252/ 382

Outline of part 4 - FOL language and semantics

12 First order logic language

13 First order logic semantics
Introduction and intuition
Formulas interpretation and evaluation
Evaluation of terms and formulas
Satisfaction, validity and logical consequence
Some theorems about First-Order Logic
Decidability for FOL
An algorithm for validity in FOL

Christophe Garion IN112 IN112 Mathematical Logic 253/ 382

Skolem standard form

We have seen that in PL, CNF of a wff ϕ that is useful to determine the
validity of ϕ (and is used in the Resolution formal system). Is there a
corresponding form in FOL?

å yes, this is Skolem standard form

Questions:

is there a Skolem standard form for each wff?
how to obtain a Skolem standard form for a given wff ϕ?
is the Skolem standard form for ϕ logically equivalent to ϕ?
how can we use Skolem standard form to determine the validity of a
wff?

We will obtain a Skolem standard form for a given wff using the steps
presented in the next slides.

Christophe Garion IN112 IN112 Mathematical Logic 254/ 382

Skolem standard form: conjunctive prenex form

Step 1: obtain a conjunctive prenex form
rename bound variables to avoid using the same variable in different
scopes (important!)
transform a closed FOL wff into an logically equivalent wff which is in
prenex form: this is a wff in which all quantifiers are at the
beginning of the formula.

ϕ ; Q1x1 . . .Qnxn︸ ︷︷ ︸
prefix

ϕ′︸︷︷︸
matrix

transform matrix into a formula in CNF

ϕ Q1x1 . . .Qnxn M[x1, . . . , xn] where M is a formula in CNF.

Christophe Garion IN112 IN112 Mathematical Logic 255/ 382

Skolem standard form: conjunctive prenex form

Rules that can be applied to obtain a prenex form (the translation of ϕ′

into a CNF has been treated in the PL case):

¬(∀x ϕ) ≡ ∃x (¬ϕ) (1)
¬(∃x ϕ) ≡ ∀x (¬ϕ) (2)

(∀x ϕ1) ∨ ϕ2 ≡ ∀x (ϕ1 ∨ ϕ2) if x 6∈ FV (ϕ2) (3)
(∃x ϕ1) ∨ ϕ2 ≡ ∃x (ϕ1 ∨ ϕ2) if x 6∈ FV (ϕ2) (4)
(∀x ϕ1) ∧ ϕ2 ≡ ∀x (ϕ1 ∧ ϕ2) if x 6∈ FV (ϕ2) (5)
(∃x ϕ1) ∧ ϕ2 ≡ ∃x (ϕ1 ∧ ϕ2) if x 6∈ FV (ϕ2) (6)
ϕ1 ∨ (∀x ϕ2) ≡ ∀x (ϕ1 ∨ ϕ2) if x 6∈ FV (ϕ1) (7)
ϕ1 ∨ (∃x ϕ2) ≡ ∃x (ϕ1 ∨ ϕ2) if x 6∈ FV (ϕ1) (8)
ϕ1 ∧ (∀x ϕ2) ≡ ∀x (ϕ1 ∧ ϕ2) if x 6∈ FV (ϕ1) (9)
ϕ1 ∧ (∃x ϕ2) ≡ ∃x (ϕ1 ∧ ϕ2) if x 6∈ FV (ϕ1) (10)

Christophe Garion IN112 IN112 Mathematical Logic 255/ 382

Skolem standard form: conjunctive prenex form

Theorem (logical equivalence)
Let ϕ be a wff, then there is a wff ϕpr in conjunctive prenex form
obtained using the previous rules that is logically equivalent to ϕ.

Beware of the → connector! For instance, find the prenex form of
(∀x ϕ1)→ ϕ2.

Christophe Garion IN112 IN112 Mathematical Logic 255/ 382

Skolem standard form: quantifiers elimination

Step 2: eliminate existential then universal quantifiers

eliminate every symbol ∃xi in the prefix
replace in matrix every occurrence of xi by a symbol fi (xi0 , . . . , xik)
such that:

fi is a new function symbol called Skolem function
xi0 , . . . , xik are variables symbols such that each of these variables is
universally quantified and appears before ∃xi in the prefix

if there is no universally quantified variable appearing before xi in the
prefix, xi is replaced by a new constant αi called Skolem constant
a formula ∀x1 . . . ∀xr (C1 ∧ . . . ∧ Cr) s.t. every Ci is a clause is
obtained
∀xi are eliminated by convention. C1 ∧ . . . ∧ Cr is therefore obtained

Christophe Garion IN112 IN112 Mathematical Logic 256/ 382

Skolem standard form: quantifiers elimination

What about logical equivalence? Unfortunately, logical equivalence
between a wff and its Skolem standard form is not true.
For instance, think about ∃x P(x) and P(α).

We have a weaker result:

Theorem (satisfiability for Skolem standard form)
Let ϕ be a wff, then there is a wff ϕsk in Skolem standard form using
the previous rules such that ϕ is satisfiable iff ϕsk is satisfiable.

Christophe Garion IN112 IN112 Mathematical Logic 256/ 382

Skolem standard form: clausal form and set of wffs

Step 3: obtain a clausal form

by convention, the previous formula is represented by the set of
clauses {D1, . . . ,Dr} called the clausal form of the formula
the clausal form of a set of wffs E is the union of the clausal forms of
the wffs appearing in E

Christophe Garion IN112 IN112 Mathematical Logic 257/ 382

Skolem standard form: clausal form and set of wffs

That is the final step of the translation. There is an important result:

Theorem (satisfiability for clausal form)
Let ϕ be a wff and Cl(ϕ) the set of clausal forms obtained from ϕ
using the previous procedure. ϕ is satisfiable iff Cl(ϕ) is satisfiable.

Let E be a set of wffs and Cl(E) the set of clausal forms obtained from
E using the previous procedure. E is satisfiable iff Cl(E) is satisfiable.

For the Resolution formal system, think about this alternative formulation
of the theorem: E is unsatisfiable iff Cl(E) unsatisfiable. . .

Christophe Garion IN112 IN112 Mathematical Logic 257/ 382

Skolem standard forms .

Exercise
Give a Skolem standard form of the following formulas:

∀x (H(x)→ ((∃y F (x , y)) ∧ (∃z M(x , z))).
(∀x P(x))→ (∃x Q(x))

∀x∀y (∃u Q(x , y , u) ∨ ¬(∃z P(x , z) ∧ P(y , z)))

Christophe Garion IN112 IN112 Mathematical Logic 258/ 382

Herbrand universe

The previous theorem is inapplicable: it must be shown that Cl(E) cannot
be satisfied by every possible interpretation, particularly using every
possible domain!

We will use a special domain built from constant and function symbols
defined in the language. This domain and the algorithm presented in the
next slides are the work of Jacques Herbrand.

Informally, the domain we will consider is built from the ground terms
that can be built from constants and functions appearing in a set of
clauses.

Christophe Garion IN112 IN112 Mathematical Logic 259/ 382

Herbrand universe

Definition (Herbrand universe)
Let S be a set of clauses. Let H0 be the set of constants appearing in
S (if no constant appears in S , let us define H0 = {a}).
Let i ∈ N .
Hi+1 = Hi ∪ {f (t1, . . . , fnf) | f appears in S and ∀j ∈ {1, . . . , nf } tj ∈
Hi}.
H∞ is called the Herbrand universe of S .

Example: if S = {P(a),Q(f (x), y)}, then H∞ = {a, f (a), f (f (a)), . . .}

Definition (Herbrand base)
Let S be a set of clauses. The Herbrand base of S is the set of
ground instances of atomic formulas built from predicate symbols
appearing in S .

Christophe Garion IN112 IN112 Mathematical Logic 259/ 382

Herbrand interpretation

Definition (Herbrand interpretation)
Let S be a set of clauses. An FOL interpretation IH = 〈DI , IH〉 is an
Herbrand interpretation on S iff:

DI = H∞

if a is a constant symbol appearing in S , IH(a) = a

let f be a function symbol appearing in S and h1, . . . , hn be
elements of H∞. Then IH(f) maps (h1, . . . , hn) to f (h1, . . . , hn)

Concerning predicates interpretation, this is often represented by a subset
of the Herbrand base.

For instance, considering S = {P(a),Q(f (x))},
IH = {P(a),P(f (a)),Q(f (a))} means that IH(P) = 〈a, f (a)〉 and
IH(Q) = 〈f (a)〉

Christophe Garion IN112 IN112 Mathematical Logic 260/ 382

Herbrand interpretation

Theorem
Let S be a set of clauses. If there is an interpretation I that satisfies S
then there is an Herbrand interpretation that satisfies S .

Christophe Garion IN112 IN112 Mathematical Logic 260/ 382

Herbrand’s theorem

Theorem (Herbrand)
A set of clauses is unsatisfiable iff there is a finite subset of ground
clauses of S instanciated with the Herbrand universe of S that is
unsatisfiable.

This theorem gives us a refutation procedure (remember the link with the
validity of an argument problem)!

build H1

build S1: set of clauses of S instanciated only with H1 terms
verify with a propositional procedure like Davis and Putnam
procedure that S1 is unsatisfiable
if not, restart with H2

. . .

Christophe Garion IN112 IN112 Mathematical Logic 261/ 382

Outline of part 5 - FOL formal systems

5 - Formal systems for first-order
logic

14 Some formal systems for FOL

15 Resolution formal system for FOL: R

Christophe Garion IN112 IN112 Mathematical Logic 262/ 382

Outline of part 5 - FOL formal systems

14 Some formal systems for FOL

15 Resolution formal system for FOL: R

Christophe Garion IN112 IN112 Mathematical Logic 263/ 382

Previously on mathematical logic. . .

A formal system is composed of two elements:
a formal language (alphabet + grammar) defining a set of
expressions E
a deductive system or deductive apparatus on E

Definition (deductive system)
A deduction system (or inference system) on a set E is composed
of a set of rules used to derive elements of E from other elements of E .
They are called inference rules.

If an inference rule allows to derive en+1 (conclusion) from P =
{e1, . . . , en} (premises), it will be noted as follows:

e1 e2 . . . en
en+1

When an inference rule is such that P = ∅ it is called an axiom.

If e1 is an axiom, it is either noted
e1

or simply e1.

A completeness theorem for FOL

An important property for formal systems is the completeness property:
given a valid wff ϕ (i.e. |= ϕ), is there a deduction of ϕ (i.e. ` ϕ)?

Gödel has shown in his doctoral dissertation that this property is true for
FOL.

Gödel, Kurt (1929).
“Über die Vollständigkeit des Logikkalküls”.
Doctoral dissertation. University of Vienna.

Christophe Garion IN112 IN112 Mathematical Logic 265/ 382

Hilbert’s formal system for FOL: H

Definition (axioms of H)
A1 P → (Q → P)

A2 (P → (Q → R))→ ((P → Q)→ (P → R))

A3 (¬P → ¬Q)→ ((¬P → Q)→ P)

A4 ∀x (P → Q)→ (P → ∀x Q) where x is not free in P

A5 ∀x P → P[x/t] where x is freely substituable by t in P

Christophe Garion IN112 IN112 Mathematical Logic 266/ 382

Hilbert’s formal system for FOL: H

Definition (Modus Ponens rule (MP))
From A and A→ B infer B:

A A→ B
(MP)

B

Definition (generalization rule (∀))

A
(∀)

∀x A

Christophe Garion IN112 IN112 Mathematical Logic 266/ 382

Gentzen’s formal system for FOL: G

The same inference rules as in PL are used + 2 rules for ∀:

Definition
suppl. inference rules for G

A[x/t],∀x A, Γ⇒ ∆,
(∀l)

∀x A, Γ⇒ ∆

Γ⇒ A[x/y],∆
(∀r)

Γ⇒ ∀x A,∆

where in (∀r), y is not free in the sequent conclusion and is not a free
variable of A.

Christophe Garion IN112 IN112 Mathematical Logic 267/ 382

Examples of proof in G

Prove that ∀x P(x)→ ∃y P(y), i.e. that ∀x P(x)⇒ ¬∀y ¬P(y) is valid:

P(t0) ,∀x P(x),∀y ¬P(y)⇒ P(t0)
(¬l)

P(t0),∀x P(x),¬P(t0),∀y ¬P(y)⇒
(∀l)

P(t0),∀x P(x),∀y ¬P(y)⇒
(∀l)

∀x P(x),∀y ¬P(y)⇒
(¬r)

∀x P(x)⇒ ¬∀y ¬P(y)

But if we always use (∀l):

...
(∀l)

P(t0),P(t1),∀x P(x)⇒ ¬∀y ¬P(y)
(∀l)

P(t0),∀x P(x)⇒ ¬∀y ¬P(y)
(∀l)

∀x P(x)⇒ ¬∀y ¬P(y)

Christophe Garion IN112 IN112 Mathematical Logic 268/ 382

Outline of part 5 - FOL formal systems

14 Some formal systems for FOL

15 Resolution formal system for FOL: R
Language: Skolem standard form and set of clauses
Deductive system

Christophe Garion IN112 IN112 Mathematical Logic 269/ 382

Outline of part 5 - FOL formal systems

14 Some formal systems for FOL

15 Resolution formal system for FOL: R
Language: Skolem standard form and set of clauses
Deductive system

Christophe Garion IN112 IN112 Mathematical Logic 270/ 382

Skolem standard form

The formal language used in the Resolution formal system is based on the
Skolem standard form.

Remember that you obtain a Skolem standard form from a wff ϕ by
applying the following procedure:

1 transform ϕ into a conjunctive prenex form, i.e. a formula
Q1x . . .Qnx ϕ

′ where ϕ′ is a formula without quantifier and in CNF
2 eliminate existential quantifiers by using Skolem constants and

functions
3 remove universal quantifiers by convention

You obtain a formula D1 ∧ . . . ∧ Dn where each Di is a clause and where
every variable is implicitely universally quantified.

A formula ϕ and its Skolem standard form ϕsk are not necessarily logically
equivalent, but ϕ is satisfiable iff ϕsk is satisfiable.

Christophe Garion IN112 IN112 Mathematical Logic 271/ 382

Set of clauses

We will use in fact the clausal form of ϕ, i.e. the set {D1, . . . ,Dn} if
ϕSk = D1 ∧ . . . ∧ Dn.
The clausal form of a wff ϕ is denoted by CL(ϕ). The usual extension to
set of wffs can be done.

N.B. (important)
Variables should be renamed between the different clauses (cf. further),
otherwise you will not be able to apply Resolution rule in some cases!

Christophe Garion IN112 IN112 Mathematical Logic 272/ 382

Outline of part 5 - FOL formal systems

14 Some formal systems for FOL

15 Resolution formal system for FOL: R
Language: Skolem standard form and set of clauses
Deductive system

Christophe Garion IN112 IN112 Mathematical Logic 273/ 382

Introduction and some intuition

In PL, Resolution base idea was to find complementary pairs like {A,¬A}
to show that a set of clauses is unsatisfiable.

Let us look at some FO clauses and see if the Resolution principle can be
applied.

Case 1: all terms are ground.

clauses set deduced wff OK?
{P(a),¬P(a)} 2 4
{P(a, b),¬P(a, b)} 2 4
{P(a) ∨ Q(b),¬P(a) ∨ R(c)} Q(b) ∨ R(c) 4

Easy, can be reduced to PL case.

Christophe Garion IN112 IN112 Mathematical Logic 274/ 382

Introduction and some intuition

In PL, Resolution base idea was to find complementary pairs like {A,¬A}
to show that a set of clauses is unsatisfiable.

Let us look at some FO clauses and see if the Resolution principle can be
applied.

Case 2: there are some variables that are not useful for the Resolution
rule.

clauses set deduced wff OK?
{P(a) ∨ Q(x),¬P(a) ∨ R(y)} Q(x) ∨ R(y) 4

Again, this is an easy case.

Christophe Garion IN112 IN112 Mathematical Logic 274/ 382

Introduction and some intuition

In PL, Resolution base idea was to find complementary pairs like {A,¬A}
to show that a set of clauses is unsatisfiable.

Let us look at some FO clauses and see if the Resolution principle can be
applied.

Case 3: there are some variables that must be used in the Resolution rule
with some ground terms.

clauses set deduced wff OK?
{P(x),¬P(a)} 2 4
{P(x) ∨ Q(b),¬P(a) ∨ R(c)} Q(b) ∨ R(c) 4
{P(x) ∨ Q(x),¬P(a) ∨ R(c)} Q(a) ∨ R(c) 4

Remember that the variables are universally quantified, so you can
substitute the variables by some other terms (remember Herbrand
theorem!).

Notice that you have to substitute all the concerned variable instances.

Christophe Garion IN112 IN112 Mathematical Logic 274/ 382

Introduction and some intuition

In PL, Resolution base idea was to find complementary pairs like {A,¬A}
to show that a set of clauses is unsatisfiable.

Let us look at some FO clauses and see if the Resolution principle can be
applied.

Case 4: there are some variables that must be used in the Resolution rule
with some variables.

clauses set deduced wff OK?
{P(x),¬P(y)} 2 4
{P(x),¬P(f (y))} 2 4

{P(x) ∨ Q(x),¬P(f (y)) ∨ R(y)} Q(f(y)) ∨ R(y) 4

Again, as the variables are universally quantified, it should not be difficult.

In the second and the third cases, we can choose for instance
[x/f (a), y/a], but we will choose the most general substitution.

Christophe Garion IN112 IN112 Mathematical Logic 274/ 382

Substitution and instance

In order to be able to apply Resolution rule, we have to use substitution
on variables. We have already seen the definitions:

Definition (substitution)
A substitution is defined by a set [. . . , vi/ti , . . .] where each vi is a
variable and each ti a term different from vi .

Definition (instance)
Let θ = [. . . , vi/ti , . . .] be a substitution. Let ϕ be a FOL wff. Then
θ(ϕ) is the formula obtained from ϕ by replacing each free instance of
vi in ϕ by ti . θ(ϕ) is called instance of ϕ.

Example:

θ = [x/a, y/f (b), z/c]
ϕ = P(x , y , z)
θ(ϕ) = P(a, f (b), c)

Christophe Garion IN112 IN112 Mathematical Logic 275/ 382

Unification

What we want in the Resolution principle is substitutions that “make the
formulas be indentical”. This is defined by the notion of unifiers.

Definition (unifier)
A substitution θ is an unifier for the set {ϕ1, . . . , ϕn} iff θ(ϕ1) = . . . =
θ(ϕn). {ϕ1, . . . , ϕn} is said to be unifiable.

Example: {P(x),P(a)} is unifiable using θ = {x/a}

Definition (most general unifier)
An unifier σ for a set {ϕ1, . . . , ϕn} is called most general unifier iff
for all unifier θ there is a substitution λ such that θ = σ ◦ λ.

Example: the most general unifier of {P(x),P(f (y))} is [x/f (y)]

Christophe Garion IN112 IN112 Mathematical Logic 276/ 382

Disagreement set

In order to unify expressions, we must find the “disagreements” between
them and variables substitutions will solve those disagreements.

Can we find automatically the correct substitutions, i.e. the most general
unifiers?

Definition (disagreement set)
The disagreement set of a set of expressions W is obtained by the
following procedure:

find the position of the first symbol (starting from left) on which
the expressions disagree
extract for each expression the sub-expression beginning with the
symbol at the previously found position

Christophe Garion IN112 IN112 Mathematical Logic 277/ 382

Disagreement set

In order to unify expressions, we must find the “disagreements” between
them and variables substitutions will solve those disagreements.

Can we find automatically the correct substitutions, i.e. the most general
unifiers?

For instance, for {P(x , f (y , z)),P(x , a),P(x , g(h(k(x))))}:

Christophe Garion IN112 IN112 Mathematical Logic 277/ 382

Disagreement set

In order to unify expressions, we must find the “disagreements” between
them and variables substitutions will solve those disagreements.

Can we find automatically the correct substitutions, i.e. the most general
unifiers?

For instance, for {P(x , f (y , z)),P(x , a),P(x , g(h(k(x))))}:
the disagreement symbol is in position 4
the disagreement set is {f (y , z), a, g(h(k(x)))}

Christophe Garion IN112 IN112 Mathematical Logic 277/ 382

Unification algorithm

Function unify(W)
Input: a set of clauses W
Output: a most general unifier σ if it exists, NO else

1 k ← 0 ;
2 W0 ← W ;
3 σk ← ε ;
4 while |Wk | 6= 1 do
5 Dk ← disagreement set of Wk ;
6 if there is vk , tk in Dk s.t. vk 6∈ tk then
7 σk+1 = σk ◦ [vk/tk] ;
8 Wk+1 ←Wk{vk/tk} ;
9 k ← k + 1 ;

10 else
11 return NO ;
12 end
13 end
14 return σk ;

Christophe Garion IN112 IN112 Mathematical Logic 278/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?
1 σ0 = ε and W0 = {P(a, x , f (g(y))),P(z , f (z), f (u))}

D0 = {a, z}

v0 = z and t0 = a
therefore σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

2 σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

D1 = {x , f (a)}
v1 = x and t1 = f (a)
therefore σ2 = [z/a, x/f (a)] and
W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

3 σ2 = [z/a, x/f (a)] and W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

D2 = {g(y), u}
v2 = u and t2 = g(y)
therefore σ3 = [z/a, x/f (a), u/g(y)] and W3 = {P(a, f (a), f (g(y)))}

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?
1 σ0 = ε and W0 = {P(a, x , f (g(y))),P(z , f (z), f (u))}

D0 = {a, z}
v0 = z and t0 = a

therefore σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}
2 σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

D1 = {x , f (a)}
v1 = x and t1 = f (a)
therefore σ2 = [z/a, x/f (a)] and
W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

3 σ2 = [z/a, x/f (a)] and W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

D2 = {g(y), u}
v2 = u and t2 = g(y)
therefore σ3 = [z/a, x/f (a), u/g(y)] and W3 = {P(a, f (a), f (g(y)))}

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?
1 σ0 = ε and W0 = {P(a, x , f (g(y))),P(z , f (z), f (u))}

D0 = {a, z}
v0 = z and t0 = a
therefore σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

2 σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

D1 = {x , f (a)}
v1 = x and t1 = f (a)
therefore σ2 = [z/a, x/f (a)] and
W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

3 σ2 = [z/a, x/f (a)] and W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

D2 = {g(y), u}
v2 = u and t2 = g(y)
therefore σ3 = [z/a, x/f (a), u/g(y)] and W3 = {P(a, f (a), f (g(y)))}

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?
1 σ0 = ε and W0 = {P(a, x , f (g(y))),P(z , f (z), f (u))}

D0 = {a, z}
v0 = z and t0 = a
therefore σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

2 σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

D1 = {x , f (a)}
v1 = x and t1 = f (a)
therefore σ2 = [z/a, x/f (a)] and
W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

3 σ2 = [z/a, x/f (a)] and W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

D2 = {g(y), u}
v2 = u and t2 = g(y)
therefore σ3 = [z/a, x/f (a), u/g(y)] and W3 = {P(a, f (a), f (g(y)))}

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?
1 σ0 = ε and W0 = {P(a, x , f (g(y))),P(z , f (z), f (u))}

D0 = {a, z}
v0 = z and t0 = a
therefore σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

2 σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}
D1 = {x , f (a)}

v1 = x and t1 = f (a)
therefore σ2 = [z/a, x/f (a)] and
W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

3 σ2 = [z/a, x/f (a)] and W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

D2 = {g(y), u}
v2 = u and t2 = g(y)
therefore σ3 = [z/a, x/f (a), u/g(y)] and W3 = {P(a, f (a), f (g(y)))}

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?
1 σ0 = ε and W0 = {P(a, x , f (g(y))),P(z , f (z), f (u))}

D0 = {a, z}
v0 = z and t0 = a
therefore σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

2 σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}
D1 = {x , f (a)}
v1 = x and t1 = f (a)

therefore σ2 = [z/a, x/f (a)] and
W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

3 σ2 = [z/a, x/f (a)] and W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

D2 = {g(y), u}
v2 = u and t2 = g(y)
therefore σ3 = [z/a, x/f (a), u/g(y)] and W3 = {P(a, f (a), f (g(y)))}

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?
1 σ0 = ε and W0 = {P(a, x , f (g(y))),P(z , f (z), f (u))}

D0 = {a, z}
v0 = z and t0 = a
therefore σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

2 σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}
D1 = {x , f (a)}
v1 = x and t1 = f (a)
therefore σ2 = [z/a, x/f (a)] and
W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

3 σ2 = [z/a, x/f (a)] and W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

D2 = {g(y), u}
v2 = u and t2 = g(y)
therefore σ3 = [z/a, x/f (a), u/g(y)] and W3 = {P(a, f (a), f (g(y)))}

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?
1 σ0 = ε and W0 = {P(a, x , f (g(y))),P(z , f (z), f (u))}

D0 = {a, z}
v0 = z and t0 = a
therefore σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

2 σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}
D1 = {x , f (a)}
v1 = x and t1 = f (a)
therefore σ2 = [z/a, x/f (a)] and
W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

3 σ2 = [z/a, x/f (a)] and W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

D2 = {g(y), u}
v2 = u and t2 = g(y)
therefore σ3 = [z/a, x/f (a), u/g(y)] and W3 = {P(a, f (a), f (g(y)))}

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?
1 σ0 = ε and W0 = {P(a, x , f (g(y))),P(z , f (z), f (u))}

D0 = {a, z}
v0 = z and t0 = a
therefore σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

2 σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}
D1 = {x , f (a)}
v1 = x and t1 = f (a)
therefore σ2 = [z/a, x/f (a)] and
W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

3 σ2 = [z/a, x/f (a)] and W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}
D2 = {g(y), u}

v2 = u and t2 = g(y)
therefore σ3 = [z/a, x/f (a), u/g(y)] and W3 = {P(a, f (a), f (g(y)))}

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?
1 σ0 = ε and W0 = {P(a, x , f (g(y))),P(z , f (z), f (u))}

D0 = {a, z}
v0 = z and t0 = a
therefore σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

2 σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}
D1 = {x , f (a)}
v1 = x and t1 = f (a)
therefore σ2 = [z/a, x/f (a)] and
W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

3 σ2 = [z/a, x/f (a)] and W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}
D2 = {g(y), u}
v2 = u and t2 = g(y)

therefore σ3 = [z/a, x/f (a), u/g(y)] and W3 = {P(a, f (a), f (g(y)))}

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Unification algorithm: example .

Is there a most general unifier of {P(a, x , f (g(y))),P(z , f (z), f (u))}?
1 σ0 = ε and W0 = {P(a, x , f (g(y))),P(z , f (z), f (u))}

D0 = {a, z}
v0 = z and t0 = a
therefore σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}

2 σ1 = [z/a] and W1 = {P(a, x , f (g(y))),P(a, f (a), f (u))}
D1 = {x , f (a)}
v1 = x and t1 = f (a)
therefore σ2 = [z/a, x/f (a)] and
W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}

3 σ2 = [z/a, x/f (a)] and W2 = {P(a, f (a), f (g(y))),P(a, f (a), f (u))}
D2 = {g(y), u}
v2 = u and t2 = g(y)
therefore σ3 = [z/a, x/f (a), u/g(y)] and W3 = {P(a, f (a), f (g(y)))}

Christophe Garion IN112 IN112 Mathematical Logic 279/ 382

Factor and binary resolvent

We can now redefine the two “rules” of PL Resolution using the mgu
notion.

Definition (factor)
If two literals with the same sign of a clause C have a most general
unifier σ, then σ(C) is called factor of C .

Definition (binary resolvent)
Let C1 and C2 be two clauses without any common variable. Let l1
and l2 be two literals of C1 and of C2.
If l1 and ¬ l2 have a most general unifier σ, then the clause (σ(C1)−
σ(l1)) ∨ (σ(C2)− σ(l2)) is called binary resolvent of C1 and of C2.

If σ(C1)− σ(l1) = σ(C2)− σ(¬l2) = φ, the binary resolvent is noted
2.

Christophe Garion IN112 IN112 Mathematical Logic 280/ 382

Factor and binary resolvent: some examples! .

Exercise (factor)
Find a factor for the following clauses:

R(x , a) ∨ Q(y) ∨ R(f (b), a)

P(f (x), x) ∨ Q(x) ∨ P(y , a)

Exercise (binary resolvent)
Find a binary resolvent for the following clauses:

P(x , a) ∨ Q(y) and ¬P(z , z)

¬P(x , f (x)) ∨ Q(g(x)) and P(a, y) ∨ R(y)

Is it possible to find a binary resolvent of P(a, x) and ¬P(x , b)?

Christophe Garion IN112 IN112 Mathematical Logic 281/ 382

Resolvent: combining factor and binary resolvent

We can now combine the two notions like in the PL case:

Definition (resolvent)
A resolvent of clauses C1 and C2 is a factor of one of the following
binary resolvents:

a binary resolvent of C1 and C2

a binary resolvent of a factor of C1 and of C2

a binary resolvent of C1 and a factor of C2

a binary resolvent of a factor of C1 and a factor of C2

Christophe Garion IN112 IN112 Mathematical Logic 282/ 382

Resolution formal system R

Definition (resolution rule R)

C1 C2
(R)

R(C1,C2)

where R(C1,C2) is a resolvent of C1 and C2.

Like in the PL case, there is no axiom. So, we expect to have
completeness for refutation only.

Christophe Garion IN112 IN112 Mathematical Logic 283/ 382

Some (good) properties for Resolution

Lemma
For all clauses C1 and C2, {C1,C2} |= R(C1,C2)

And of course:

Theorem (completeness of resolution principle)
A set of clauses S is unsatisfiable iff there is a deduction of 2 in R
(also called refutation) from S .

Christophe Garion IN112 IN112 Mathematical Logic 284/ 382

Socrates: back in high school. . . .

Exercise
Using a FOL language and the Resolution formal system, prove that
the following argument is correct:

all humans are mortal
Socrates is human
therefore Socrates is mortal

Christophe Garion IN112 IN112 Mathematical Logic 285/ 382

Variable renaming is important!

Variable renaming between the different clauses is important, as you may
do mistakes when not renaming.

For instance, consider the two wffs ∀x∃y P(x , y) and ∀x∃y Q(x , y).

Without renaming, you can deduce ∀x∃y P(x , y) ∧ Q(x , y) from those
two wffs, which is clearly not the case. . .

Christophe Garion IN112 IN112 Mathematical Logic 286/ 382

How to use Resolution?

What to prove How to prove it

Σ is unsatisfiable CL(Σ) `R 2

Σ |= ϕ CL(Σ ∪ {¬ϕ}) `R 2

|= ϕ CL(¬ϕ) `R 2

You can also use Resolution to solve “fill-in-the-blank” questions like “who
are the x such that P(x , a) holds?”.
In this case, consider the formula P(x , a)→ Goal(x), use it with
Resolution and stop when producing a clause with only Goal literals.

Christophe Garion IN112 IN112 Mathematical Logic 287/ 382

Students or not? .

Exercise
Prove using the Resolution formal system that the following argument
is correct:

every student has a student card
PhD students are students
the only persons who benefit from ONERA work council are
ONERA employees
PhD students at ONERA benefit from ONERA work council
therefore PhD students at ONERA are ONERA employees who
have a student card

Christophe Garion IN112 IN112 Mathematical Logic 288/ 382

To ski or not to ski .

Exercise
Represent the following facts and question in first-order logic:

Tony, Mike, and John belong to the Alpine Club. Every
member of the Alpine Club is either a skier or a mountain
climber (or both). No mountain climber likes rain, and all
skiers like snow. Mike dislikes whatever Tony likes and likes
whatever Tony dislikes. Tony likes rain and snow. Is there a
member of the Alpine Club who is a mountain climber but
not a skier?

Using Resolution, find the answer.

Christophe Garion IN112 IN112 Mathematical Logic 289/ 382

Outline of part 6 - Program analysis with FOL

6 - Program analysis with first-order
logic

16 Logical representation of a program

17 Program analysis

18 Halting and answer

19 Correctness and equivalence

20 Specialization

Christophe Garion IN112 IN112 Mathematical Logic 290/ 382

Disclaimer

All the material presented in this part is taken from Chang and Lee 1973.

Chang, Chin-Liang and Richard Char-Tung Lee (1973).
Symbolic logic and mechanical theorem proving.
Academic Press.

Christophe Garion IN112 IN112 Mathematical Logic 291/ 382

Introduction

We considering a program P, some questions arise:

the halting problem: given an input i , does P halt?
the answer problem: given an input i and considering that P halts,
what is the answer returned by P?
the correctness problem: given an input i , does the answer given
by P respect its specifications?
the equivalence problem: given two programs, do they give the
same results with the same inputs?
the specialization problem: given a set I of acceptable inputs for
P, when considering I∗ ⊆ I, how can P be simplified to P∗ such
that P∗ is faster than P on I∗?

Christophe Garion IN112 IN112 Mathematical Logic 292/ 382

Outline of part 6 - Program analysis with FOL

16 Logical representation of a program

17 Program analysis

18 Halting and answer

19 Correctness and equivalence

20 Specialization

Christophe Garion IN112 IN112 Mathematical Logic 293/ 382

“Classical” representation of a program

x1 > 0

y ← x1 + 1 y ← x2 + 1 z ← x1

x1 < y?

y ← y2 y ← x21 z ← x1 + y halt

y > 16

yes

no

no

yes

no

yes

Directed graph

We want to model a program by first-order formulas.

In order to find such a representation, we will model a program by a
directed graph.

Definition (directed graph)
A directed graph is composed of a non-empty set V , a set A such that
elements of A does not appear in V and an application D : A→ V ×V .

V : vertices
A: arcs
path in a directed graph: a1, a2, . . . , an where each ai has vi−1 as tail
vertice and vi as head vertice.

Christophe Garion IN112 IN112 Mathematical Logic 295/ 382

(A) formal definition of a program

Definition (program)
A program is composed of a vector of input variables ~x = {x1, . . . , xn},
a vector of program variables ~y = {y1, . . . , ym}, a vector of output
variables ~z = {z1, . . . , zl} and a finite directed graph such that:

1 there is only one vertice that is never head of an arc: S
2 there is only one vertice that is never tail of an arc: H
3 every vertice v ∈ V is on a path from S to H

4 every arc a ∈ A is associated to a quantifier-free formula Pa(~x , ~y)
called test formula for a

5 for each arc a ∈ A:
if a does not have H as tail, an assignation ~y ← fa(~x , ~y) is
associated to a
if a has H as tail, an assignation ~z ← fa(~x , ~y) is associated to a

6 for each vertice v ∈ V different from H, if a1, . . . , an are the
outgoing arcs from v , then for all value of ~x and ~y , one and only
one of the Pai (~x , ~y) is true (determinism)

Prog. definition: example

Function sum(x1, x2)
Input: two natural numbers x1 et x2
Output: the result of the addition of x1 and x2

1 y1 ← x1 ;
2 y2 ← x2 ;
3 while y2 6= 0 do
4 y1 ← y1 + 1 ;
5 y2 ← y2 − 1 ;
6 end
7 z ← y1 ;
8 halt ;

Christophe Garion IN112 IN112 Mathematical Logic 297/ 382

Directed graph: example

S

1

H

y1 ← x1
y2 ← x2

y2 = 0

z ← y1y2 6= 0

y1 ← y1 + 1
y2 ← y2 − 1

Christophe Garion IN112 IN112 Mathematical Logic 298/ 382

Translation into FOL formulas

Definition (access predicate)
Let v ∈ V . The access predicate of v is a predicate Qv s.t. Qv (~x , ~y)
(or QH(~x , ~z) if v = H) is defined as the condition for going from S to
v with inputs vector ~x and variables vector updated to ~y (or ~z).

QS(~x , ~y) is supposed to be always “true”.

QH is called the halting predicate.

Definition (arc formula)
Let a = (vi , vj) be an arc of a program, Pa(~x , ~y) be the test formula
associated to a, fa(~x , ~y) be the assignation associated to a, then the
formula of a is a formula Wa such that

Wa ≡ Qi (~x , ~y) ∧ Pa(~x , ~y)→ Qj(~x , fa(~x , ~y))

Christophe Garion IN112 IN112 Mathematical Logic 299/ 382

Logical description: example

sum(x1,x2)

QS→1 ≡Q1(x1, x2, x1, x2)

Q1→1 ≡Q1(x1, x2, y1, y2) ∧ y2 6= 0→
Q1(x1, x2, y1 + 1, y2 − 1)

Q1→H ≡Q1(x1, x2, y1, y2) ∧ y2 = 0→
QH(x1, x2, y1)

S

1

H

y1 ← x1
y2 ← x2

y2 = 0

z ← y1y2 6= 0

y1 ← y1 + 1
y2 ← y2 − 1

Christophe Garion IN112 IN112 Mathematical Logic 300/ 382

Formula describing a program

Definition (formula describing a program)
Let a1, . . . , an be the arcs of a program P. Then ∀~y Wa1 ∧ . . . ∧Wan

is called the formula describing P.

Remark: inputs are considered as constants.

Theorem
Let P be a program and AP be the set of clauses representing the
formula describing P. Then AP is satisfiable.

Christophe Garion IN112 IN112 Mathematical Logic 301/ 382

Outline of part 6 - Program analysis with FOL

16 Logical representation of a program

17 Program analysis

18 Halting and answer

19 Correctness and equivalence

20 Specialization

Christophe Garion IN112 IN112 Mathematical Logic 302/ 382

Program analysis

First idea: use Resolution to generate conclusions on a program P from
AP .

å “redefine” the program specifications

?(x)

QS→1 D(x , 7)→ Q1(x , x)

QS→H ¬D(x , 7)→ QH(x , a)

Q1→H Q1(x , y) ∧ ¬D(y , 9)→ QH(x , b)

C1 ¬D(x , 7) ∨ Q1(x , x)

C2 D(x , 7) ∨ QH(x , a)

C3 ¬Q1(x , y) ∨ D(y , 9) ∨ QH(x , b)

S

1 H

¬D(x , 7)

z ← a

D(x , 7)

y ← x

¬D(y , 9) z ← b

D(x , 7) ∨ QH(x , a) and ¬D(x , 7) ∨ D(x , 9) ∨ QH(x , b) can be deduced on
this program.

Christophe Garion IN112 IN112 Mathematical Logic 303/ 382

Program analysis: loops

sum(x1,x2)

C1 Q1(x1, x2, x1, x2)

C2 ¬Q1(x1, x2, y1, y2) ∨ y2 = 0∨
Q1(x1, x2, y1 + 1, y2 − 1)

C3 ¬Q1(x1, x2, y1, y2) ∨ y2 6= 0∨
QH(x1, x2, y1)

S

1

H

y1 ← x1
y2 ← x2

y2 = 0

z ← y1y2 6= 0

y1 ← y1 + 1
y2 ← y2 − 1

induction schema (not obvious. . .)

∃y2 [(y2 > 0 ∧ Q1(x1, x2, x1, y2))∧
∀y3 (y3 > 0 ∧ Q1(x1, x2, x1, y3)→ Q1(x1, x2, x1 + 1, y3 − 1))]

→ Q1(x1, x2, x1 + x2, 0)

Program analysis: loop

C1 Q1(x1, x2, 0, x2)
C2 ¬Q1(x1, x2, y1, y2) ∨ y2 = 0 ∨ Q1(x1, x2, y1 + x1, y2 − 1)
C3 ¬Q1(x1, x2, y1, y2) ∨ y2 6= 0 ∨ QH(x1, x2, y1)
C4 y2 ≯ 0 ∨ ¬Q1(x1, x2, x1, y2) ∨ f (y2) > 0 ∨ Q1(x1, x2, x1 + x2, 0)
C5 y2 ≯ 0 ∨ ¬Q1(x1, x2, x1, y2) ∨ Q1(x1, x2, x1, f (y2))∨

Q1(x1, x − 2, x1 + x2, 0)
C6 y2 ≯ 0 ∨ ¬Q1(x1, x2, x1, y2) ∨ ¬Q1(x1, x2, x1 + 1, f (y2)− 1)∨

Q1(x1, x2, x1 + x2, 0)
C7 x2 > 0
C8 0 = 0
C9 u ≯ 0 ∨ u 6= 0

QH(x1, x2, x1 + x2) can be produced (but it is very long. . .).

Christophe Garion IN112 IN112 Mathematical Logic 305/ 382

Outline of part 6 - Program analysis with FOL

16 Logical representation of a program

17 Program analysis

18 Halting and answer

19 Correctness and equivalence

20 Specialization

Christophe Garion IN112 IN112 Mathematical Logic 306/ 382

Halting and response

halting: given P and a specification of its inputs, does P halt?
answer: given P and a specification of its inputs, what is the answer
provided by P?

Those two problems are linked. . .

We need the following informations:

AP : formulas describing P
AS : formulas describing test predicates and assignation functions (for
instance, axioms for equality etc.)
AI : formulas characterizing inputs

Theorem
If Ai ∧ AS is consistent, then Ai ∧ As ∧ AP is satisfiable.

Christophe Garion IN112 IN112 Mathematical Logic 307/ 382

Halting problem

Theorem
Let P be a program whose description is AP ∧ AI ∧ AS . Then P halts
iff AP ∧ AI ∧ AS |= ∃~z QH(~x , ~z).

For instance:
QS→1 ∧ QS→H ∧ Q1→H |= QH(x , a) ∨ QH(x , b) S

1 H

¬D(x , 7)

z ← a

D(x , 7)

y ← x

¬D(y , 9) z ← b

Christophe Garion IN112 IN112 Mathematical Logic 308/ 382

Halting and anwser

Definition (halting clause)
A clause containing only the literal QH is called halting clause.

Lemma (program halting)
Let P a program and AT the formula obtained by removing all literals
containing QH from AP . Then P halts iff AT ∧AS ∧AI is unsatisfiable.

Theorem (program answer)
Let P be a program. Then P halts iff there is a deduction from an
halting clause from AP ∧ AS ∧ AI .

Christophe Garion IN112 IN112 Mathematical Logic 309/ 382

Program halting: example

C1 Q1(x1, x2, 0, x2)
C2 ¬Q1(x1, x2, y1, y2) ∨ y2 = 0 ∨ Q1(x1, x2, y1 + x1, y2 − 1)
C3 ¬Q1(x1, x2, y1, y2) ∨ y2 6= 0
C4 y2 ≯ 0 ∨ ¬Q1(x1, x2, x1, y2) ∨ f (y2) > 0 ∨ Q1(x1, x2, x1 + x2, 0)
C5 y2 ≯ 0 ∨ ¬Q1(x1, x2, x1, y2) ∨ Q1(x1, x2, x1, f (y2))∨

Q1(x1, x − 2, x1 + x2, 0)
C6 y2 ≯ 0 ∨ ¬Q1(x1, x2, x1, y2) ∨ ¬Q1(x1, x2, x1 + 1, f (y2)− 1)∨

Q1(x1, x2, x1 + x2, 0)
C7 x2 > 0
C8 0 = 0
C9 u ≯ 0 ∨ u 6= 0

Christophe Garion IN112 IN112 Mathematical Logic 310/ 382

Outline of part 6 - Program analysis with FOL

16 Logical representation of a program

17 Program analysis

18 Halting and answer

19 Correctness and equivalence

20 Specialization

Christophe Garion IN112 IN112 Mathematical Logic 311/ 382

Correctness and equivalence: definition

Definition (correctness)
Let P be a program and R(~x , ~z) a specification of P expressed using
a relation. P is correct with respect to R(~x , ~z) iff AP ∧ AS ∧ Ai |=
∃~z QH(~x , ~z) ∧ R(~x , ~z).

Definition (equivalence)
Let P1 and P2 be two programs. P1 and P2 are equivalent iff AP1 ∧
AP2 ∧ AS ∧ Ai |= ∃~z Q1

H(~x , ~z) ∧ Q2
H(~x , ~z).

Christophe Garion IN112 IN112 Mathematical Logic 312/ 382

Correctness: example

Constraints:

x1 > 0
x2 > 0

“Axioms”:

¬(x1 > 0) ∨ ¬(x2 > 0) ∨ (x1 + x2 >
x1)

S

1

H

y1 ← 0
y2 ← x2

y2 = 0

z ← y1
y2 6= 0

y1 ← y1 + 1
y2 ← y2 − 1

Specification
z > x1

∃z QH(x1, x2, z) ∧ (z > x1) can be easily proved.

Christophe Garion IN112 IN112 Mathematical Logic 313/ 382

Outline of part 6 - Program analysis with FOL

16 Logical representation of a program

17 Program analysis

18 Halting and answer

19 Correctness and equivalence

20 Specialization

Christophe Garion IN112 IN112 Mathematical Logic 314/ 382

Specialization procedure

Definition (specialization)
Given a set I of acceptable input for P, if we consider I∗ ⊆ I, how
can P be simplified into P∗ such that P∗ is faster than P on I∗?

Function specialization(P, I∗)
Input: a program P and a set of inputs I∗
Output: a program P∗ specialization of P for I∗

1 S ← AP ∧ AS ∧ AI∗ ;
2 deduce an halting clause CH from S using a deduction of D ;
3 P∗ = P − {ak = (vi , vj) : Qi→j is not used inD} ;
4 return P∗ ;

Christophe Garion IN112 IN112 Mathematical Logic 315/ 382

Specialization: example

S

1

2 H

¬D(x , 7)

z ← a

D(x , 7)

y ← x

¬D(y , 9)

z ← b

D(y , 9)

y ← y

¬D(y , 11) z ← c

D(y , 11) z ← d

Initially: I = N
Now: I∗ = {x ∈ N : x < 10}

Christophe Garion IN112 IN112 Mathematical Logic 316/ 382

Specialization: example

AP :
C1 ¬D(x , 7) ∨ Q1(x , x)
C2 D(x , 7) ∨ QH(x , a)
C3 ¬Q1(x , y) ∨ ¬D(y , 9) ∨ Q2(x , y)
C4 ¬Q1(x , y) ∨ D(y , 9) ∨ QH(x , b)
C5 ¬Q2(x , y) ∨ D(y , 11) ∨ QH(x , c)
C6 ¬Q2(x , y) ∨ ¬D(y , 11) ∨ QH(x , d)

AS :
C7 ¬(x < 10) ∨ ¬D(x , 11)

AI∗ :
C8 x < 10

QH(x , a) ∨ QH(x , b) ∨ QH(x , c) can be deduced without using C6.

Christophe Garion IN112 IN112 Mathematical Logic 317/ 382

Outline of part 7 - Formal number theory

7 - Formal number theory

21 First-order theories

22 Formal number theory

Christophe Garion IN112 IN112 Mathematical Logic 318/ 382

Introduction

Hilbert’s program: “mathematize” mathematics!

Particularly, we are interested in mathematics consistency: from a “good”
formalization of math., we cannot deduce ϕ and ¬ϕ.

Let’s start with arithmetics!

Two Gödel incompleteness theorems:
1 there a “sentence” in arithmetics that says that it is not provable, so

there are undecidable statements in arithmetics
2 consistency of arithmetics can not be expressed into arithmetics

Two fundamental ideas:

fixed point notion
coding of arithmetics (and proofs of arithmetics) in arithmetics

Christophe Garion IN112 IN112 Mathematical Logic 319/ 382

Outline of part 7 - Formal number theory

21 First-order theories

22 Formal number theory

Christophe Garion IN112 IN112 Mathematical Logic 320/ 382

First-order theory

Definition (first-order theory)
Let LFOLbe a first-order language. A first-order theory is a formal
theory K whose symbols and wffs are the symbols and wffs of LFOLand
whose axioms and inference rules are defined as follows.

Definition (logical axioms)
Let ϕ, ψ and γ be wffs of LFOL.

A1 ϕ→ (ψ → ϕ)

A2 (ϕ→ (ψ → γ))→ ((ϕ→ ψ)→ (ϕ→ γ))

A3 (¬ψ → ¬ϕ)→ ((¬ψ → ϕ)→ ψ)

A4 ∀xi ϕ(xi)→ ϕ(t) if ϕ(xi) is a wff of LFOLand t a free term for xi
in ϕ(xi)

A5 (∀xi (ϕ→ ψ))→ (ϕ→ ∀xi ψ) if ϕ does not have free
occurrences of xi

Christophe Garion IN112 IN112 Mathematical Logic 321/ 382

Non-logical axioms

Non-logical axioms or proper axioms of each theory are defined in the
theory.

N.B.
They are not necessary tautologies.

N.B.
A first-order theory without non-logical axioms is called predicate
calculus.

Christophe Garion IN112 IN112 Mathematical Logic 322/ 382

Inference rules

Definition (Modus Ponens rule (MP))
From A and A→ B infer B:

A A→ B
(MP)

B

Definition (generalization rule (∀))

A
(∀)

∀x A

Christophe Garion IN112 IN112 Mathematical Logic 323/ 382

Model of a first-order theory

Definition (model of a theory)
Let K be a first-order theory expressed in the language LFOL. A model
of K is an interpretation I of LFOLin which all axioms of K are valid
formulas.

Christophe Garion IN112 IN112 Mathematical Logic 324/ 382

Properties of first-order theories

Theorem (soundness)
Every theorem of predicate calculus is valid.

Theorem (consistency)
Predicate calculus is consistent.

Theorem (completeness (Gödel, 1930))
Every valid formula of predicate calculus is a theorem.

Christophe Garion IN112 IN112 Mathematical Logic 325/ 382

First-order theory with equality

Definition (first-order theory with equality)
Let K be a first-order theory with a binary predicate A. We will note
t = s as an abbreviation of A(t, s) and t 6= s as an abbreviation of
¬A(t, s).
K is a first-order theory with equality if the following wff are proper
axioms (schematas) of K :

A6 ∀x x = x

A7 ∀x∀y x = y → (ϕ→ ϕ[x |y]) for every wff ϕ such that x is freely
substitutable by y in ϕ

The second axiom is called Leibniz’s law.

Christophe Garion IN112 IN112 Mathematical Logic 326/ 382

Example: partial orders

Let us consider a FO language with a binary predicate <, without function
nor constant symbol.

Non-logical axioms for partial orders

A6 ∀x ¬(x < x)

A7 ∀x∀y∀z x < y ∧ y < z → x < z

Christophe Garion IN112 IN112 Mathematical Logic 327/ 382

Example: groups

Let us consider a FO language with equality and with a function symbol
+ and a constant symbol 0.

Non-logical axioms for groups

A8 ∀x∀y∀z (x + (y + z) = (x + y) + z)

A9 ∀x 0 + x = x

A10 ∀x∃y x + y = 0

Theorem
Group theory is decidable.

This is not the case for instance for free groups.

Christophe Garion IN112 IN112 Mathematical Logic 328/ 382

Outline of part 7 - Formal number theory

21 First-order theories

22 Formal number theory
Peano arithmetics
Number-theoretic functions
Arithmetization and Gödel numbers
Gödel incompleteness theorems

Christophe Garion IN112 IN112 Mathematical Logic 329/ 382

Introduction

Objective
Find a complete and consistent first-order theory representing arith-
metics.

We will see:

a formalization of arithmetics due to Peano
a logical theory representing Peano’s arithmetics
that we can express all interesting functions on natural numbers in
this theory
that such a theory does not exist (Gödel’s theorems)

Christophe Garion IN112 IN112 Mathematical Logic 330/ 382

Outline of part 7 - Formal number theory

21 First-order theories

22 Formal number theory
Peano arithmetics
Number-theoretic functions
Arithmetization and Gödel numbers
Gödel incompleteness theorems

Christophe Garion IN112 IN112 Mathematical Logic 331/ 382

Peano postulates

Peano postulates for arithmetics

P1 0 is a natural number
P2 if x is a natural number, there is another natural number called

successor of x and denoted by x ′

P3 0 6= x ′ for all natural number x
P4 if x ′ = y ′ then x = y

P5 if Q is a property on natural numbers and if a) 0 verifies Q and b)
if when natural number x verifies Q then x ′ verifies Q, then all
natural numbers verify Q

Christophe Garion IN112 IN112 Mathematical Logic 332/ 382

A theory for arithmetics: S

Let us consider a FO language LA with a single predicate (noted =), a
single constant (noted 0) and three functions (noted ′, + and .). Let S be
a FO theory on LA.

Non-logical axioms of S

S1 x1 = x2 → (x1 = x3 → x2 = x3)

S2 x1 = x2 → x ′1 = x ′2
S3 0 6= x ′1
S4 x ′1 = x ′2 → x1 = x2

S5 x1 + 0 = x1

S6 x1 + x ′2 = (x1 + x2)′

S7 x1.0 = 0
S8 x1.x

′
2 = (x1.x2) + x1

S9 ϕ(0)→ (∀x (ϕ(x)→ ϕ(x ′))→ ∀x ϕ(x)) for all wff ϕ

Christophe Garion IN112 IN112 Mathematical Logic 333/ 382

Properties of S

Theorem
S is a FO theory with equality.

Easy to prove. . .

Definition (standard interpretation)
The standard interpretation (or standard model) of S is an “intuitive”
interpretation of S such that:

S domain is N
the natural number 0 is the interpretation of the symbol 0
adding of 1 is the interpretation of ′

addition and multiplication on natural numbers are the
interpretations of + and .
the interpretation of = is identity on N

Properties of S

Some theorems can be exhibited in S :

“generalization” of axioms to any terms
t = r → (t = s → r = s)

distributivity of multiplication
t.(r + s) = (t.r) + (r .s)

associativity of multiplication
(t.r).s = t.(r .s)

cancellation law for addition
t + s = r + s → t = r

Christophe Garion IN112 IN112 Mathematical Logic 335/ 382

Numerals

The terms 0, 0′, 0′′ etc. are called numerals and are denoted by 0, 1, 2
etc.

More precisely, 0 is 0 and for all natural number n, n + 1 = n′.

We can easily prove “classical” theorems, like for instance t + 1 = t ′ and
the following properties for m and n if m and n are natural numbers:

if m 6= n then `S m 6= n

`S m + n = m + n

`S m.n = m.n

Christophe Garion IN112 IN112 Mathematical Logic 336/ 382

Outline of part 7 - Formal number theory

21 First-order theories

22 Formal number theory
Peano arithmetics
Number-theoretic functions
Arithmetization and Gödel numbers
Gödel incompleteness theorems

Christophe Garion IN112 IN112 Mathematical Logic 337/ 382

Definition of number-theoretic functions

Definition (number-theoretic function)
A number-theoretic function is a total function from Np to N.

Definition (function expressibility)
Let K be a theory with equality on LA. Let f be a number-theoretic
function with arity n. f is representable in K iff there is a wff
ϕ(x1, . . . , xn, y) (x1, . . . , xn, y being free variables in ϕ) such that for
all natural numbers k1, . . . , kn,m:

1 if f (k1, . . . , kn) = m then `K ϕ(k1, . . . , kn,m)

2 `K ∃y ϕ(k1, . . . , kn, y)

f is strongly representable in K if condition 2 is replaced by:
2 `K ∃y ϕ(x1, . . . , xn, y)

Christophe Garion IN112 IN112 Mathematical Logic 338/ 382

Number-theoretic functions expressibility

Theorem (weak/strong repr. equivalence)
A function f is strongly representable in K iff f is representable in K .

This proposition allows to work only with strongly representable functions,
i.e. functions which “work” with all terms!

Christophe Garion IN112 IN112 Mathematical Logic 339/ 382

Primitive recursive and recursive functions

Definition (initial functions)

the zero function, Z (x) = 0 for all x
the successor function, N(x) = x + 1 for all x
the projection function, Un

i (x1, . . . , xn) = xi for all x1, . . . , xn

Definition (building rules)

substitution:

f (x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hn(x1, . . . , xn))

recursion:

f (x1, . . . , xn, 0) =g(x1, . . . , xn)

f (x1, . . . , xn, y + 1) =h(x1, . . . , xn, y , f (x1, . . . , xn, y))

restrictive µ-operator: µy(g(x1, . . . , xn, y) = 0) is the smallest y
such that g(x1, . . . , xn, y) = 0.

Primitive recursive and recursive functions

Definition (recursive functions)
A function is primitive recursive iff it can be obtained by using in a
finite number of steps initial functions, substitution and recursion.
A function is recursive iff it can be obtained by using in a finite
number of steps initial functions, substitution, recursion and restrictive
µ-operator.

Initial functions are (of course) primitive recursive.

Some recursive functions: +, ., power, predecessor, absolute value,
factorial, minimum, maximum, remaining of euclidian division, sum,
product etc.

Christophe Garion IN112 IN112 Mathematical Logic 341/ 382

Some examples of recursive functions

predecessor
{

δ(0) = 0
δ(y + 1) = y

function
.
−

{
x
.
− 0 = x

x
.
− (y + 1) = δ(x

.
− y)

absolute value |x − y | = (x
.
− y) + (y

.
− x)

= 0? sg(x) = x
.
− δ(x)

remaining of division
{

rm(x , 0) = 0
rm(x , y + 1) = N(rm(x , y)) ∗ sg(|x − N(rm(x , y))|)

Christophe Garion IN112 IN112 Mathematical Logic 342/ 382

Gödel β function

Definition (Gödel β function)
β(x1, x2, x3) = rm(1 + (x3 + 1).x2, x1)

Some properties:
β is primitive recursive
β(x1, x2, x3) is representable by the following FOL wff:

∃w (x1 = (1 + (x3 + 1).x2).w + y ∧ y < 1 + (x3 + 1).x2)

Theorem
For all sequence of natural numbers k0, . . . , kn there is b and c such
that β(b, c , i) = ki for 0 ≤ i ≤ n.

The previous propositions are used to prove the following result:

Theorem (representation of recursive functions)
Every recursive function is representable in S .

Outline of part 7 - Formal number theory

21 First-order theories

22 Formal number theory
Peano arithmetics
Number-theoretic functions
Arithmetization and Gödel numbers
Gödel incompleteness theorems

Christophe Garion IN112 IN112 Mathematical Logic 344/ 382

Gödel numbers: symbols

Definition (Gödel numbers of symbols)
Let K be a FOL theory. Every symbol of K is associated to a natural
number in the following way:

g(() = 3, g()) = 5, g(,) = 7, g(¬) = 9, g(→) = 11, g(∀) = 13
g(xk) = 13 + 8k for k ≥ 1
g(ak) = 7 + 8k for k ≥ 1
g(xk) = 13 + 8k for k ≥ 1
g(f nk) = 1 + 8(2n3k) for k , n ≥ 1
g(An

k) = 3 + 8(2n3k) for k , n ≥ 1

Different symbols have different Gödel numbers.

Christophe Garion IN112 IN112 Mathematical Logic 345/ 382

Gödel numbers: expressions and sequences

Definition (Gödel number of an expression)
Let u0u1 . . . ur be an expression, then:

g(u0u1 . . . ur) = 2g(u0)3g(u1) . . . pg(uk)r

where pi is the i-th prime number.

Gödel numbers of expressions are different from the symbols ones.

Definition (Gödel number of a sequence)
Let e0, e1, . . . , er be a finite sequence of expression of K , then:

g(e0, e1, . . . , er) = 2g(e0)3g(e1) . . . pg(ek)r

The Gödel number of sequences are all different and different of Gödel
numbers of expressions and symbols.

Christophe Garion IN112 IN112 Mathematical Logic 346/ 382

Primitive recursive vocabulary

Definition (primitive recursive vocabulary)
A theory K have a primitive recursive vocabulary (a recursive vocabulary)
if the following properties are primitive recursive (or recursive):

IC (x): x is the Gödel number of a constant symbol of K
FL(x): x is the Gödel number of a function symbol of K
PL(x): x is the Gödel number of a predicate symbol of K

A theory K which have a finite number of constant symbols, function
symbols and predicate symbols have a primitive recursive vocabulary. . .

. . . paricularly S!

Christophe Garion IN112 IN112 Mathematical Logic 347/ 382

Recursive functions and relations

Let us consider a theory K with a recursive vocabulary. Then a lot of
interesting recursive functions are representable in this theory:

EVbl(x): x is the Gödel number of an expression which is a variable
and variants on functions, terms, atomic formulas, formulas,
substitution, axiom instances etc.
MP(x , y , z): the expression with Gödel number z is a consequence of
application of Modus Ponens on the expressions with Gödel numbers
x and y .
Sub(y , u, v) the Gödel number of the result of the substitution of all
free occurrences of the variable which has for Gödel number v has for
Gödel number u.
Num(y): the Gödel number of the expression y .
Nu(x): x is the Gödel number of a numeral.
D(u): the Gödel number of ϕ(u) if u is the Gödel number of the wff
ϕ(x1). D is called the diagonal function.
Let us remark that D(u) = Sub(u,Num(u), 21).

Christophe Garion IN112 IN112 Mathematical Logic 348/ 382

Recursive set of axioms

Definition (recursive set of axioms)
A theory K has a (primitive) recursive set of axioms if the following
function is (primitive) recursive:
PrAx(y): y is the Gödel number of a non-logical axiom of K .

Theorem
S has a primitive recursive set of axioms.

Theorem
Let K be a theory with a recursive vocabulary and a recursive axioms
set. Then the following relations are recursive:

Ax(y): y is the Gödel number of an axiom of K .
Prf (y): y is the Gödel number of a proof in K .
Pf (x , y): y is the Gödel number of a proof in K of the wff with
Gödel number x .

Functions representativity

Theorem
Let K be a theory with equality with a constant 0 and a function f 11
and such that it has a recursive axioms set. Let us suppose that for all
natural numbers r and s, if `K r = s then r = s, then every function
that is representable K is recursive.

Christophe Garion IN112 IN112 Mathematical Logic 350/ 382

Outline of part 7 - Formal number theory

21 First-order theories

22 Formal number theory
Peano arithmetics
Number-theoretic functions
Arithmetization and Gödel numbers
Gödel incompleteness theorems

Christophe Garion IN112 IN112 Mathematical Logic 351/ 382

Fixed point theorems

Let ϕ be an expression of a theory and q its Gödel number. We will note
q by n(ϕ) (it is the “name” of ϕ in LA).

Theorem (diagonalization lemma)
Let us suppose that the diagonalization function is representable in a
theory K with equality. Then for all wff ψ(x1) in which x1 is the only
free variable, there is a closed formula ϕ such that:

`K ϕ↔ ψ(n(ϕ))

Theorem (fixed point theorem)
Let us suppose that all recursive functions are representable in a theory
with equality K . Then for all formula ψ(x1) in which x1 is the only free
variable, there is a closed wff ϕ such that:

`K ϕ↔ ψ(n(ϕ))

Christophe Garion IN112 IN112 Mathematical Logic 352/ 382

ω-consistency

Definition
Let K be a theory with constant symbol 0 and function symbol f 11 .
K is ω-consistent if for all wff ϕ(x1) with x1 as only free variable, if
`K ¬ϕ(n) for all natural number n, then it is false that `K ∃x ϕ(x).

Theorem
If K is ω-consistent, then K is consistent.

Easy: consider ψ(x) ≡ ϕ(x) ∧ ¬ϕ(x).

Christophe Garion IN112 IN112 Mathematical Logic 353/ 382

First Gödel incompleteness theorem

Theorem (first incompleteness theorem)
Let K be a theory with equality in LA satisfying:

1 K has a recursive axioms set
2 `K 0 6= 1
3 every recursive function is representable in K

Let us consider the relation Pf (x , y) meaning that x is the Gödel
number of a proof in K of a formula having for Gödel number y , then
there is a closed formula G such that:

`K G ↔ ∀x ¬Pf (x , n(G))

In this case, if K is ω-consistent, then it is false that `K G and it is
false that `K ¬G.
G is undecidable.

Christophe Garion IN112 IN112 Mathematical Logic 354/ 382

Second Gödel incompleteness theorem

Theorem (second Gödel incompleteness theorem)
Let K be an extension of S having a recursive axioms set. Let CK be
the following closed wff:

∀x1∀x2∀x3∀x4 ¬(PF(x1, x3) ∧ PF(x2, x4) ∧N (x3, x4))

`K CK → G therefore if K is consistent, then CK is not provable in K .

Christophe Garion IN112 IN112 Mathematical Logic 355/ 382

Outline of part 8 - Logic programming

8 - Logic programming

23 Definitions and evaluation algorithm

24 Evaluation examples

25 Prolog search tree

26 Logic programming and Resolution

Christophe Garion IN112 IN112 Mathematical Logic 356/ 382

Introduction

There are several programming paradigms:
procedural (C, Pascal. . .)
object-oriented (SmallTalk, Objective C, C++, Java, Python, Ruby,
. . .)
functional (Caml, LISP, Haskell)
logic (Prolog)
etc.

A Prolog program defines relations, not a algorithm.

Christophe Garion IN112 IN112 Mathematical Logic 357/ 382

Prolog program: an example

Example (sum of two natural numbers)
add(z,X,X). for all X , 0 + X = X
add(s(Y),X,s(V)) :- add(Y,X,V). for all X , Y , V , if

X + Y = V then
s(Y) + X = s(V)

We can ask Prolog some questions: add(s(s(z)),s(s(s(z))),W)?
å meaning: is there a W such that add(s(s(z)),s(s(s(z))),W)

holds, i.e. W = 2 + 3?

In this case, Prolog answers W = s(s(s(s(s(z))))).

Christophe Garion IN112 IN112 Mathematical Logic 358/ 382

Prolog basic principles

Instructions in a Prolog program can be viewed as the premises of an
argument.

A request can be viewed as the conclusion of an argument from the
previous premises.

The fact that the conclusion can be deduced from the premises is proved
by using Resolution. Variables are used and instanciated.

Basic Prolog syntax

representing data: using terms
identifier beginning by a lowercase letter: function or predicate
symbol
identifier beginning by a uppercase letter: variable symbol

Christophe Garion IN112 IN112 Mathematical Logic 359/ 382

Outline of part 8 - Logic programming

23 Definitions and evaluation algorithm

24 Evaluation examples

25 Prolog search tree

26 Logic programming and Resolution

Christophe Garion IN112 IN112 Mathematical Logic 360/ 382

Program clause

Definition (Prolog program)
A Prolog program is a sequence of clauses.

Syntax (Program clause)

A :- B1, . . . ,Bn .

Intuition: for all possible values for variables, if B1, . . . ,Bn are all true,
then A is true.

If n = 0, then the clause is a fact and is simply denoted by A.

Christophe Garion IN112 IN112 Mathematical Logic 361/ 382

Program clause

Definition (Prolog program)
A Prolog program is a sequence of clauses.

Syntax (Program clause)

A :- B1, . . . ,Bn .

Intuition: for all possible values for variables, if B1, . . . ,Bn are all true,
then A is true.

If n = 0, then the clause is a fact and is simply denoted by A.

Christophe Garion IN112 IN112 Mathematical Logic 361/ 382

Program clause

Definition (Prolog program)
A Prolog program is a sequence of clauses.

Syntax (Program clause)

A

head
:- B1, . . . ,Bn

body

.

Intuition: for all possible values for variables, if B1, . . . ,Bn are all true,
then A is true.

If n = 0, then the clause is a fact and is simply denoted by A.

Christophe Garion IN112 IN112 Mathematical Logic 361/ 382

Program clause

Definition (Prolog program)
A Prolog program is a sequence of clauses.

Syntax (Program clause)

A

head
:- B1, . . . ,Bn

body

.

Intuition: for all possible values for variables, if B1, . . . ,Bn are all true,
then A is true.

If n = 0, then the clause is a fact and is simply denoted by A.

Christophe Garion IN112 IN112 Mathematical Logic 361/ 382

Program clause

Definition (Prolog program)
A Prolog program is a sequence of clauses.

Syntax (Program clause)

A

head
:- B1, . . . ,Bn

body

.

Intuition: for all possible values for variables, if B1, . . . ,Bn are all true,
then A is true.

If n = 0, then the clause is a fact and is simply denoted by A.

Christophe Garion IN112 IN112 Mathematical Logic 361/ 382

Program clause

Definition (Prolog program)
A Prolog program is a sequence of clauses.

Syntax (Program clause)

A

head
:- B1, . . . ,Bn

body

.

Intuition: for all possible values for variables, if B1, . . . ,Bn are all true,
then A is true.

If n = 0, then the clause is a fact and is simply denoted by A.

beware of us!

Christophe Garion IN112 IN112 Mathematical Logic 361/ 382

Query clause

Syntax (Query clause)

:-B1, . . . ,Bn.

Intuition: are there values for variables such that B1, . . . ,Bn are all true?

Beware
For the program clause B(X) :- C (Y ,X).

X is universally quantified
Y is existentially quantified

Christophe Garion IN112 IN112 Mathematical Logic 362/ 382

Terminology: Prolog resolvent

Definition (Most general unifier)
If p(t1, . . . , tn) and p(s1, . . . , sn) are two atoms such thath the subsitu-
tion σ is a most general unifier of those atoms, then p(t1, . . . , tn) and
p(s1, . . . , sn) are unifiable by mgu σ.

Definition (Prolog resolvent)
Let R = :- A1, . . . ,Am be a query clause and C = A′1 :- B1, . . . ,Bp

be a program clause with m > 0 and p ≥ 0. If A1 and A′1 are unifiable
by σ, then the new query clause R ′ = :- σ(B1, . . . ,Bp,A2, . . . ,Am) is
called Prolog resolvent of R and C .

Christophe Garion IN112 IN112 Mathematical Logic 363/ 382

Idea behind Prolog resolvent

The idea behind Prolog resolvent is the same as behind Resolution in
First-Order Logic (cf. last slides in this part).

More intuitively, consider a program clause A′:-B1, . . . ,Bn. It can be read
as “if B1, . . . ,Bn hold, then A′ holds”. . .
. . . but you can also understand the clause as “to prove A′, it is sufficient
to prove B1, . . . ,Bn”.

Thus, when you have a request involving A such that A and A′ are
unifiable, you can replace the A part of the request by B1, . . . ,Bn (given
the substitution).

Does it end? It depends (cf. next slides), but facts can be used, e.g.:

clause add(X, z, X).
request add(s(s(z)), z, W).
resolvent empty clause with substitution X/s(s(z))

Christophe Garion IN112 IN112 Mathematical Logic 364/ 382

Evaluation algorithm

There is a non-determinist evaluation algorithm for Prolog.

Inputs: a Prolog program P and a query clause R

Output: two possibilities

a substitution σ for the variables appearing in R (if R does not
contain variables, the output is YES);
NO

Given a Prolog program P and a query R, an evaluation of R can have
three issues:

ending with success
ending with NO

no ending!

Christophe Garion IN112 IN112 Mathematical Logic 365/ 382

Algorithm

Algorithm 23.1: Prolog evaluator
Input: a Prolog program P and a query R
Output: a substitution σ for variables appearing in R, else NO

1 Rc ← R ;
2 mguc ← ∅ ;
3 while Rc =:- G1, . . . ,Gk 6= ∅ do
4 choose C = G ′

1 :- D1, . . .Dt ∈ P st G1 et G ′
1 unifiable by σ ;

5 if C does not exist then
6 break ;
7 end
8 Rc ← Prolog resolvent of G1 and C (replace G1) ;
9 mguc ← mguc ◦ σ ;

10 end
11 if Rc = ∅ then
12 compute restriction σ′ of mguc to R variables ;
13 if σ′ = ∅ then
14 return YES ;
15 else
16 return σ′ ;
17 end
18 else
19 return No ;
20 end

Outline of part 8 - Logic programming

23 Definitions and evaluation algorithm

24 Evaluation examples

25 Prolog search tree

26 Logic programming and Resolution

Christophe Garion IN112 IN112 Mathematical Logic 367/ 382

Example

Program
1 parent(jack,mary).

2 parent(louise,jack).

3 parent(franck,john).

4 ancestor(X,Y) :- parent(X,Y).

5 ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).

Query
:- ancestor(W,mary)

Some evaluation examples are presented in the next slides.

Christophe Garion IN112 IN112 Mathematical Logic 368/ 382

Example 1: evaluation with success

σ = ∅ {W /X1,Y 1/mary ,X1/jack }

ancestor(W,mary)

parent(X1,mary)

∅

parent(jack,mary).
parent(louise,jack).
parent(franck,john).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- ancestor(X,Z),

parent(Z,Y).

Answer: {W /jack}

Christophe Garion IN112 IN112 Mathematical Logic 369/ 382

Example 2: evaluation with success

σ = ∅ {W /X1,Y 1/mary ,X1/X2,Z1/Y 2,X2/louise,Y 2/jack }

ancestor(W,mary)

ancestor(X1,Z1),parent(Z1,mary)

parent(X2,Y2),parent(Y2,mary)

parent(jack,mary)

∅

parent(jack,mary).
parent(louise,jack).
parent(franck,john).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- ancestor(X,Z),

parent(Z,Y).

Answer: {W /louise}

Christophe Garion IN112 IN112 Mathematical Logic 370/ 382

Example 3: evaluation with failure

σ = ∅ {W /X1,Y 1/mary ,X1/X2,Z1/Y 2,X2/franck,Y 2/john }

ancestor(W,mary)

ancestor(X1,Z1),parent(Z1,mary)

parent(X2,Y2),parent(Y2,mary)

parent(john,mary)

parent(jack,mary).
parent(louise,jack).
parent(franck,john).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- ancestor(X,Z),

parent(Z,Y).

Answer: NO

Christophe Garion IN112 IN112 Mathematical Logic 371/ 382

Example: evaluation with no ending

Using only clause ancestor(X,Y) :- ancestor(X,Z),parent(Z,Y).

ancestor(W,mary)

ancestor(X1,Z1),parent(Z1,mary)

ancestor(X2,Z2),parent(Z2,Y2),parent(Y2,mary)

...

...

No ending!

Christophe Garion IN112 IN112 Mathematical Logic 372/ 382

Outline of part 8 - Logic programming

23 Definitions and evaluation algorithm

24 Evaluation examples

25 Prolog search tree

26 Logic programming and Resolution

Christophe Garion IN112 IN112 Mathematical Logic 373/ 382

Prolog search tree

Definition (Prolog search tree)
A Prolog search tree for a program P and a query R is a tree whose
nodes are query clauses and such that:

its root is R;
if a node is a non-empty query :- A1, . . . ,An (where n > 0) and
C1, . . . ,Ck (where k > 0) are the program clauses (appearing in
this order in P) whose heads are unifiable with A1, then this
node has k children Res1, . . . ,Resk where for i ∈ {1, . . . , k}, Resi
is the Prolog resolvent of A1 with the clause Ci ;
if a node is a non-empty query :- A1, . . . ,An (where n > 0) and
if there is no program clause whose head is unifiable with A1, then
this node is a failure leaf;
if a node is the empty query, then this node is a success leaf.

Christophe Garion IN112 IN112 Mathematical Logic 374/ 382

Prolog search tree for our example (simplified)

ancestor(W,mary)

parent(W,mary)
ancestor(W,Z),
parent(Z,mary)

parent(W,Z),
parent(Z,mary)

parent(mary,mary) parent(jack,mary) parent(john,mary)

ancestor(W,Z1),
ancestor(Z1,Z),
parent(Z,mary)

.

The Prolog tree on our example is infinite on the right.

Christophe Garion IN112 IN112 Mathematical Logic 375/ 382

Exploring the search tree

Depth-first exploration

if the current branch ends with success, the evaluation stops and
give the corresponding answer;
if the current branch ends with failure, the next branch is
considered. The next clause usable for the query represented by
the parent node of the current node is chosen (backtracking);
if after having given the result of a success branch the user send a
“continue” instruction, the next branch is considered as if the
current branch had failed (backtracking);
if the branch does not end, the evaluator does not stop.

Christophe Garion IN112 IN112 Mathematical Logic 376/ 382

Exploring the search tree

Thus. . .

the answers to the query R are given into an order that depends
of the writing order of clauses and atoms in P;
infinite branch ⇒ the interpreter does not stop;
the answer NO corresponds to the case where the tree is finite and
where every branch is a failure branch.

Christophe Garion IN112 IN112 Mathematical Logic 376/ 382

Prolog search tree building on our example (simplified)

ancestor(W,mary)

parent(W,mary)1
ancestor(W,Z),
parent(Z,mary) 2

parent(W,Z),
parent(Z,mary)3

parent(mary,mary)

4
parent(jack,mary)

5
parent(john,mary)

6

ancestor(W,Z1),
ancestor(Z1,Z),
parent(Z,mary)

7

.

user backtracking after success
Prolog backtracking after failure

Christophe Garion IN112 IN112 Mathematical Logic 377/ 382

Atoms order is important!

Theorem
The order of atoms in the clauses bodies determine the structure of
the search tree.

For instance, replace in the previous program the clause 5 by
ancestor(X,Y) :- parent(Z,Y),ancestor(X,Z).

ancestor(W,mary)

parent(W,mary)
parent(Z,mary),
ancestor(W,Z)

ancestor(W,jack)

parent(W,jack) parent(Z1,jack), ancestor(W,Z1)

ancestor(W,louise)

parent(W,louise) parent(Z2,louise), ancestor(W,Z2)

Christophe Garion IN112 IN112 Mathematical Logic 378/ 382

Clauses order is important!

Theorem
The order of the clauses in the program is important:

the answers order can change
the Prolog interpretor can loop

For instance, swap clauses 4 and 5. . .

ancestor(W,mary)

ancestor(W,Z1), parent(Z1,mary)

ancestor(W,Z2), parent(Z2,Z1), parent(Z1,mary)

. . .

Christophe Garion IN112 IN112 Mathematical Logic 379/ 382

Outline of part 8 - Logic programming

23 Definitions and evaluation algorithm

24 Evaluation examples

25 Prolog search tree

26 Logic programming and Resolution

Christophe Garion IN112 IN112 Mathematical Logic 380/ 382

Prolog and Resolution?

The formula associated to A1 : −B1, . . . ,Bm with variables X1, . . . ,Xn is
∀x1 . . . ∀xn ((B1 ∧ . . . ∧ Bm)→ A1), thus ¬B1 ∨ . . . ∨ ¬Bm ∨ A1.

NB: there is only one positive literal in the clause.

The formula associated to the query : −B1, . . . ,Bm is
∀x1 . . . ∀xn (B1 ∧ . . . ∧ Bm)→ ⊥, thus ¬B1 ∨ . . . ∨ ¬Bm.

Intuition: find a refutation with Resolution!

Definition (Horn clause)
A clause is defined if it contains one and only one positive literal. A
clause is negative if it does not contain positive literal.
A Horn clause is either a defined clause, either a negative clause.

Christophe Garion IN112 IN112 Mathematical Logic 381/ 382

Link between Prolog and Resolution

For instance: the first successful branch.

A successful branch is just a refutation using Resolution from the set
of Horn clauses.

∃x1 . . . ∃xn (B1 ∧ . . . ∧ Bm) is a logical consequence of the program.

A constructive proof is found (the variables are assigned).

Prolog uses the Linear Resolution with Selection Function.

Christophe Garion IN112 IN112 Mathematical Logic 382/ 382

	Introduction
	History of logic
	A first guided tour on mathematical logic
	Model theory vs. proof theory
	Some examples and what can be done
	Some computational aspects
	Mathematical logic for Computer Science

	A short bibliography
	Agenda

	PL language and semantics
	Propositional language LPL
	Defining a formal language
	Alphabet of LPL
	Definition of LPL

	Classical propositional logic semantics
	Boolean functions
	Interpretations
	Satisfiability and logical consequence
	Useful lemmas and theorems

	Technics and algorithms for validity
	Evaluating formulas
	Truth tables
	Equivalent formulas
	Conjunctive normal forms
	The Davis-Putnam algorithm
	The SAT problem

	Formal systems for propositional logic
	Formal systems
	Hilbert formal system for PL: H
	Definition
	Important theorems

	Gentzen's formal system for PL: G
	Formal language: sequent
	Gentzen's deductive system
	Automatic proof building

	Resolution formal system for PL: R
	Formal language: conjunctive normal forms
	Resolution deductive system
	Deduction and completeness
	A simple formal system with only one rule

	FOL language and semantics
	First order logic language
	Alphabet
	Language
	Scope, free and bound variables
	Substitution
	Subformulas

	First order logic semantics
	Introduction and intuition
	Formulas interpretation and evaluation
	Evaluation of terms and formulas
	Satisfaction, validity and logical consequence
	Some theorems about First-Order Logic
	Decidability for FOL
	An algorithm for validity in FOL

	FOL formal systems
	Some formal systems for FOL
	Resolution formal system for FOL: R
	Language: Skolem standard form and set of clauses
	Deductive system

	Program analysis with FOL
	Logical representation of a program
	Program analysis
	Halting and answer
	Correctness and equivalence
	Specialization

	Formal number theory
	First-order theories
	Formal number theory
	Peano arithmetics
	Number-theoretic functions
	Arithmetization and Gödel numbers
	Gödel incompleteness theorems

	Logic programming
	Definitions and evaluation algorithm
	Evaluation examples
	Prolog search tree
	Logic programming and Resolution

