
Invoking GNU Make
To invoke GNU make type the following command line:

make [-f makefile-name] [options] [targets]

The following file names will be searched for in the current directory automatically:
GNUMakefile, Makefile, makefile.

By default, the first target will be invoked if not target are given.

Rule

target : dependency [dependency ...]
command
[command]

where target is the result of the operation, command are the recipes to execute and
dependency is the input of the operation. Beware of tabulations before commands!

Dependency between rules

target : target1 target2
...

target1 : dependencies_1
...

target_2 : dependencies_2
...

make program builds a dependency-tree from these rules.

Standard target names
Mainly taken from autotools, please use them:

all build application
install install what needs to be installed
clean erase all files built by make all
distclean erase also all configuration files

Built-in target names

.PHONY define targets which are not files (e.g. clean)

.DEFAULT the default target

.IGNORE ignore errors in prerequisites of this rule

Variables

HEADER = prg.h
FILES = $(HEADER)

then $(FILES) is expanded to prg.h running make program.

Automatic variables
$@ the file name of the target of the rule
$< the name of the first prerequisite
$^ the names of all the prerequisites

$(XD) and $(XF) can be used to extract the directory and the file part of the name corre-
sponding to $X. For instance, if $@ is src/foo.c, then $(@D) is src and $(@F) is foo.c

Suffix rules (aka pattern rules)
Rules used to process a depency of two given types of files (defined by extensions).

%.o : %.c
gcc -c $<

This will compile any C code, supposing it’s extension is .c.
Some rules are built-in, for instance for C compilation.

Including another makefile

include PATH_TO_MAKEFILE

GNU Make reference card – Christophe Garion IN323

Using functions
Functions can be called from a Makefile. To call a function foo with arguments x and y:

$(foo x,y)

Functions already defined (more to find in [1]):

$(subst FROM,TO,TEXT) replaces all occurences of FROM by TO in TEXT
$(suffix NAMES...) extract the suffix of each file names in NAMES
$(suffix NAMES...) extract the suffix of each file names in NAMES
$(basename NAMES...) extract all but the suffix of each file names in

NAMES

Using conditionals
Using conditionals with the following constructs:

ifeq (ARG1, ARG2) ARG1 equals to ARG2?
ifneq (ARG1, ARG2) ARG1 not equals to ARG2?
ifdef VAR-NAME is VAR-NAME defined?
ifndef VAR-NAME is VAR-NAME not defined?

For instance in a command:

ifndef PROXY
PROXY = proxy.isae.fr

endif

Conditional functions can be used (particulary in a functional context):

$(if CONDITION,THEN-PART[,ELSE-PART])
$(or CONDITION1,CONDITION2[,CONDITION3...])
$(and CONDITION1,CONDITION2[,CONDITION3...])

Using shell for loop
To use shell for loop in a recipe, do not forget to add \ at the end of each lines and to use
$$ to get the variables values:

target:
for number in 1 2 3 4 ; do \
echo $$number \

done

Foreach loop
The foreach function can be used to repeatedly use a piece of text:

$(foreach VAR,LIST,TEXT)

The following example sets the variable C_FILES to the list of all files with suffix .c in the
directories specified in the list DIRS (the wildcard function allows to use wildcards in file
names):

DIRS = ./src ./tests
C_FILES = $(foreach dir, DIRS, $(wildcard $(dir)/*.c))

Ignoring errors in command
Put “-” before command to ignore potential errors, e.g.

clean :
- rm *.o

References
[1] Free Software Foundation. GNU Make. 2014. url: http://www.gnu.org/software/make/.

GNU Make reference card – Christophe Garion IN323

http://www.gnu.org/software/make/

